Update utils.py
Browse files
utils.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import torch
|
2 |
|
3 |
def validate_sequence(sequence):
|
@@ -5,13 +6,13 @@ def validate_sequence(sequence):
|
|
5 |
return all(aa in valid_amino_acids for aa in sequence) and len(sequence) <= 200
|
6 |
|
7 |
def load_model():
|
8 |
-
#
|
9 |
model = torch.load('solubility_model.pth', map_location=torch.device('cpu'))
|
10 |
model.eval()
|
11 |
return model
|
12 |
|
13 |
def predict(model, sequence):
|
14 |
-
|
15 |
-
|
16 |
-
output = model(
|
17 |
-
return output.item()
|
|
|
1 |
+
from transformers import AutoTokenizer
|
2 |
import torch
|
3 |
|
4 |
def validate_sequence(sequence):
|
|
|
6 |
return all(aa in valid_amino_acids for aa in sequence) and len(sequence) <= 200
|
7 |
|
8 |
def load_model():
|
9 |
+
# Load your model as before
|
10 |
model = torch.load('solubility_model.pth', map_location=torch.device('cpu'))
|
11 |
model.eval()
|
12 |
return model
|
13 |
|
14 |
def predict(model, sequence):
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained('facebook/esm2_t6_8M_UR50D')
|
16 |
+
tokenized_input = tokenizer(sequence, return_tensors="pt", truncation=True, padding=True)
|
17 |
+
output = model(**tokenized_input)
|
18 |
+
return output.item()
|