|
import streamlit as st |
|
from utils import validate_sequence, predict |
|
from model import models |
|
import pandas as pd |
|
|
|
def main(): |
|
st.title("AA Property Inference Demo", anchor=None) |
|
|
|
|
|
st.markdown(""" |
|
<style> |
|
.reportview-container { |
|
font-family: 'Courier New', monospace; |
|
} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
sequence = st.text_input("Enter your amino acid sequence:") |
|
uploaded_file = st.file_uploader("Or upload a CSV file with amino acid sequences", type="csv") |
|
|
|
if st.button("Analyze Sequence"): |
|
sequences = [sequence] if sequence else [] |
|
if uploaded_file: |
|
df = pd.read_csv(uploaded_file) |
|
sequences.extend(df['sequence'].tolist()) |
|
|
|
results = [] |
|
for seq in sequences: |
|
if validate_sequence(seq): |
|
model_results = {} |
|
for model_name, model in models.items(): |
|
prediction, confidence = predict(model, seq) |
|
model_results[f"{model_name}_prediction"] = prediction |
|
model_results[f"{model_name}_confidence"] = round(confidence, 3) |
|
results.append({"Sequence": seq, **model_results}) |
|
else: |
|
st.error(f"Invalid sequence: {seq}") |
|
|
|
if results: |
|
st.write("### Results") |
|
results_df = pd.DataFrame(results) |
|
st.dataframe(results_df.style.format(precision=3)) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|