test3 / utils.py
basilboy's picture
Update utils.py
121b388 verified
raw
history blame
986 Bytes
from transformers import AutoTokenizer
import torch
import torch.nn.functional as F
def validate_sequence(sequence):
valid_amino_acids = set("ACDEFGHIKLMNPQRSTVWY") # 20 standard amino acids
return all(aa in valid_amino_acids for aa in sequence) and len(sequence) <= 200
def load_model():
# Load your model as before
model = torch.load('solubility_model.pth', map_location=torch.device('cpu'))
model.eval()
return model
def predict(model, sequence):
tokenizer = AutoTokenizer.from_pretrained('facebook/esm2_t6_8M_UR50D')
tokenized_input = tokenizer(sequence, return_tensors="pt", truncation=True, padding=True)
output = model(**tokenized_input)
logits = output.logits # Extract logits
probabilities = F.softmax(logits, dim=-1) # Apply softmax to convert logits to probabilities
predicted_label = torch.argmax(probabilities, dim=-1) # Get the predicted label
return predicted_label.item() # Return the label as a Python integer