File size: 2,316 Bytes
c8e874d
186e4b6
f132523
7c87bff
232e962
 
c8e874d
49c5855
253caff
7c87bff
253caff
088cb01
7c87bff
 
 
 
 
 
088cb01
7c87bff
232e962
 
 
 
 
 
8a7095f
232e962
 
 
 
88dbd92
232e962
 
 
88dbd92
 
 
232e962
88dbd92
 
7c87bff
 
232e962
88dbd92
232e962
88dbd92
232e962
7c87bff
88dbd92
7c87bff
232e962
253caff
8a7095f
 
 
 
232e962
 
49c5855
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import streamlit as st
from utils import validate_sequence, predict, plot_prediction_graphs
from model import models
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

def main():
    st.set_page_config(layout="wide")  # Keep the wide layout for overall flexibility
    st.title("AA Property Inference Demo", anchor=None)

    # Instructional text below title
    st.markdown("""
        <style>
        .reportview-container {
            font-family: 'Courier New', monospace;
        }
        </style>
        <p style='font-size:16px;'><span style='font-size:24px;'>&larr;</span> Don't know where to start? Open tab to input a sequence.</p>
        """, unsafe_allow_html=True)

    # Input section in the sidebar
    sequence = st.sidebar.text_input("Enter your amino acid sequence:")
    uploaded_file = st.sidebar.file_uploader("Or upload a CSV file with amino acid sequences", type="csv")
    analyze_pressed = st.sidebar.button("Analyze Sequence")
    show_graphs = st.sidebar.checkbox("Show Prediction Graphs")

    sequences = [sequence] if sequence else []
    if uploaded_file:
        df = pd.read_csv(uploaded_file)
        sequences.extend(df['sequence'].tolist())

    results = []
    all_data = {}
    if analyze_pressed:
        for seq in sequences:
            if validate_sequence(seq):
                model_results = {}
                graph_data = {}
                for model_name, model in models.items():
                    prediction, confidence = predict(model, seq)
                    model_results[f"{model_name}_prediction"] = prediction
                    model_results[f"{model_name}_confidence"] = round(confidence, 3)
                    graph_data[model_name] = (prediction, confidence)
                results.append({"Sequence": seq, **model_results})
                all_data[seq] = graph_data
            else:
                st.sidebar.error(f"Invalid sequence: {seq}")

        if results:
            results_df = pd.DataFrame(results)
            st.write("### Results")
            st.dataframe(results_df.style.format(precision=3), width=None, height=None)
            
            if show_graphs and all_data:
                st.write("## Graphs")
                plot_prediction_graphs(all_data)


if __name__ == "__main__":
    main()