File size: 10,544 Bytes
c4eecf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import os
import gradio as gr
import torch
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
import numpy as np
import plotly.express as px
from sklearn.metrics.pairwise import cosine_similarity
import umap
import pandas as pd

class EmbeddingVisualizer:
    def __init__(self):
        self.model = None
        self.tokenizer = None
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    def load_model(self, model_name):
        if self.model is not None:
            # Clear CUDA cache if using GPU
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
        self.tokenizer = AutoTokenizer.from_pretrained(model_name, token=os.environ.get("HF_TOKEN"))
        if "gemma" in model_name:
            self.model = AutoModelForCausalLM.from_pretrained(model_name, token=os.environ.get("HF_TOKEN"), torch_dtype=torch.float16)
        else:
            self.model = AutoModel.from_pretrained(model_name)
        self.model = self.model.to(self.device)
        return f"Loaded model: {model_name}"

    def get_embedding(self, text):
        if not text.strip():
            return None
        inputs = self.tokenizer(text, return_tensors="pt", padding=True)
        inputs = {k: v.to(self.device) for k, v in inputs.items()}
        with torch.no_grad():
            outputs = self.model(**inputs, output_hidden_states=True)
            hidden_states = outputs.hidden_states[-1]
            mask = inputs["attention_mask"].unsqueeze(-1).expand(hidden_states.size()).float()
            masked_embeddings = hidden_states * mask
            sum_embeddings = torch.sum(masked_embeddings, dim=1)
            sum_mask = torch.clamp(torch.sum(mask, dim=1), min=1e-9)
            embedding = (sum_embeddings / sum_mask).squeeze().cpu().numpy()
        return embedding

    def calculate_similarity_matrix(self, embeddings):
        if not embeddings:
            return None
        embeddings_np = np.array(embeddings)
        return cosine_similarity(embeddings_np)

    def reduce_dimensionality(self, embeddings, n_components, method):
        # Ensure we have enough samples for the requested components
        n_samples = embeddings.shape[0]
        
        # If only one sample, return it repeated to create a visible point
        if n_samples == 1:
            return np.tile(np.zeros((1, n_components)), (1, 1))
            
        n_components = min(n_components, n_samples - 1)  # Ensure k < N
        
        if method == "pca":
            reducer = PCA(n_components=n_components)
        elif method == "umap":
            # For very small datasets, fall back to PCA
            if n_samples < 4:
                reducer = PCA(n_components=n_components)
            else:
                # Adjust parameters based on data size
                n_neighbors = min(15, n_samples - 1)  # Ensure n_neighbors < n_samples
                min_dist = 0.1 if n_samples > 4 else 0.5  # Increase min_dist for small datasets
                
                reducer = umap.UMAP(
                    n_components=n_components,
                    n_neighbors=n_neighbors,
                    min_dist=min_dist,
                    metric='euclidean',
                    random_state=42
                )
        else:
            raise ValueError("Invalid dimensionality reduction method")
            
        # Convert to dense array if sparse
        if hasattr(embeddings, 'toarray'):
            embeddings = embeddings.toarray()
            
        return reducer.fit_transform(embeddings)


    def visualize_embeddings(self, model_choice, is_3d,

                             word1, word2, word3, word4, word5, word6, word7, word8,

                             positive_word1, positive_word2,

                             negative_word1, negative_word2,

                             dim_reduction_method):
        words = [word1, word2, word3, word4, word5, word6, word7, word8]
        words = [w for w in words if w.strip()]
        positive_words = [w for w in [positive_word1, positive_word2] if w.strip()]
        negative_words = [w for w in [negative_word1, negative_word2] if w.strip()]
        embeddings = []
        labels = []
        for word in words:
            emb = self.get_embedding(word)
            if emb is not None:
                embeddings.append(emb)
                labels.append(word)
        if positive_words or negative_words:
            pos_embs = [self.get_embedding(w) for w in positive_words if self.get_embedding(w) is not None]
            neg_embs = [self.get_embedding(w) for w in negative_words if self.get_embedding(w) is not None]
            if pos_embs or neg_embs:
                pos_sum = sum(pos_embs) if pos_embs else 0
                neg_sum = sum(neg_embs) if neg_embs else 0
                arithmetic_emb = pos_sum - neg_sum
                embeddings.append(arithmetic_emb)
                labels.append("Arithmetic Result")
        if not embeddings:
            return None
        embeddings = np.array(embeddings)
        # Reduce dimensionality
        if is_3d:
            embeddings_reduced = self.reduce_dimensionality(embeddings, 3, dim_reduction_method)
            fig = px.scatter_3d(x=embeddings_reduced[:, 0],
                                 y=embeddings_reduced[:, 1],
                                 z=embeddings_reduced[:, 2],
                                 text=labels,
                                 title=f"3D Word Embeddings Visualization ({model_choice}) - {dim_reduction_method.upper()}")
            fig.update_traces(textposition='top center')
            return fig
        else:
            embeddings_reduced = self.reduce_dimensionality(embeddings, 2, dim_reduction_method)
            fig = px.scatter(x=embeddings_reduced[:, 0],
                             y=embeddings_reduced[:, 1],
                             text=labels,
                             title=f"2D Word Embeddings Visualization ({model_choice}) - {dim_reduction_method.upper()}")
            fig.update_traces(textposition='top center')
            return fig


    def visualize_similarity_heatmap(self, model_choice,

                                      word1, word2, word3, word4, word5, word6, word7, word8):
        words = [word1, word2, word3, word4, word5, word6, word7, word8]
        words = [w for w in words if w.strip()]
        embeddings = [self.get_embedding(word) for word in words if self.get_embedding(word) is not None]
        if not embeddings:
            return None
        similarity_matrix = self.calculate_similarity_matrix(embeddings)
        if similarity_matrix is None:
            return None
        fig = plt.figure(figsize=(10, 8))
        ax = fig.add_subplot(111)
        cax = ax.matshow(similarity_matrix, interpolation='nearest')
        fig.colorbar(cax)
        ax.set_xticks(np.arange(len(words)))
        ax.set_yticks(np.arange(len(words)))
        ax.set_xticklabels(words, rotation=45, ha='left')
        ax.set_yticklabels(words)
        plt.title(f"Cosine Similarity Heatmap ({model_choice})")
        return fig

# Initialize the visualizer
visualizer = EmbeddingVisualizer()

# Create Gradio interface
with gr.Blocks() as iface:
    gr.Markdown("# Word Embedding Visualization")
    with gr.Row():
        with gr.Column():
            model_choice = gr.Dropdown(
                choices=["google/gemma-2b", "bert-large-uncased"],
                value="google/gemma-2b",
                label="Select Model"
            )
            load_status = gr.Textbox(label="Model Status", interactive=False)
            is_3d = gr.Checkbox(label="Use 3D Visualization", value=False)
            dim_reduction_method = gr.Radio(
                choices=["pca", "umap"],
                value="pca",
                label="Dimensionality Reduction Method"
            )
        with gr.Column():
            word1 = gr.Textbox(label="Word 1")
            word2 = gr.Textbox(label="Word 2")
            word3 = gr.Textbox(label="Word 3")
            word4 = gr.Textbox(label="Word 4")
            word5 = gr.Textbox(label="Word 5")
            word6 = gr.Textbox(label="Word 6")
            word7 = gr.Textbox(label="Word 7")
            word8 = gr.Textbox(label="Word 8")
        with gr.Column():
            positive_word1 = gr.Textbox(label="Positive Word 1")
            positive_word2 = gr.Textbox(label="Positive Word 2")
            negative_word1 = gr.Textbox(label="Negative Word 1")
            negative_word2 = gr.Textbox(label="Negative Word 2")
    with gr.Tabs():
        with gr.Tab("Scatter Plot"):
            plot_output = gr.Plot()
        with gr.Tab("Similarity Heatmap"):
            heatmap_output = gr.Plot()

    # Load model when selected
    model_choice.change(
        fn=visualizer.load_model,
        inputs=[model_choice],
        outputs=[load_status]
    )
    # Update visualization when any input changes
    inputs = [
        model_choice, is_3d,
        word1, word2, word3, word4, word5, word6, word7, word8,
        positive_word1, positive_word2,
        negative_word1, negative_word2,
        dim_reduction_method
    ]
    for input_component in inputs:
        input_component.change(
            fn=visualizer.visualize_embeddings,
            inputs=inputs,
            outputs=[plot_output]
        )
    similarity_inputs = [model_choice,
                          word1, word2, word3, word4, word5, word6, word7, word8]
    for input_component in similarity_inputs:
        input_component.change(
            fn=visualizer.visualize_similarity_heatmap,
            inputs=similarity_inputs,
            outputs=[heatmap_output]
        )

    # Add Clear All button
    clear_button = gr.Button("Clear All")

    def clear_all():
        return [""] * 12  # Returns empty strings for the 12 text input components

    clear_button.click(
        fn=clear_all,
        inputs=[],
        outputs=[word1, word2, word3, word4, word5, word6, word7, word8,
                 positive_word1, positive_word2,
                 negative_word1, negative_word2]
    )

if __name__ == "__main__":
    # Load initial model
    visualizer.load_model("google/gemma-2b")
    iface.launch()