Spaces:
Sleeping
Sleeping
File size: 10,544 Bytes
c4eecf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import os
import gradio as gr
import torch
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
import numpy as np
import plotly.express as px
from sklearn.metrics.pairwise import cosine_similarity
import umap
import pandas as pd
class EmbeddingVisualizer:
def __init__(self):
self.model = None
self.tokenizer = None
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def load_model(self, model_name):
if self.model is not None:
# Clear CUDA cache if using GPU
if torch.cuda.is_available():
torch.cuda.empty_cache()
self.tokenizer = AutoTokenizer.from_pretrained(model_name, token=os.environ.get("HF_TOKEN"))
if "gemma" in model_name:
self.model = AutoModelForCausalLM.from_pretrained(model_name, token=os.environ.get("HF_TOKEN"), torch_dtype=torch.float16)
else:
self.model = AutoModel.from_pretrained(model_name)
self.model = self.model.to(self.device)
return f"Loaded model: {model_name}"
def get_embedding(self, text):
if not text.strip():
return None
inputs = self.tokenizer(text, return_tensors="pt", padding=True)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = self.model(**inputs, output_hidden_states=True)
hidden_states = outputs.hidden_states[-1]
mask = inputs["attention_mask"].unsqueeze(-1).expand(hidden_states.size()).float()
masked_embeddings = hidden_states * mask
sum_embeddings = torch.sum(masked_embeddings, dim=1)
sum_mask = torch.clamp(torch.sum(mask, dim=1), min=1e-9)
embedding = (sum_embeddings / sum_mask).squeeze().cpu().numpy()
return embedding
def calculate_similarity_matrix(self, embeddings):
if not embeddings:
return None
embeddings_np = np.array(embeddings)
return cosine_similarity(embeddings_np)
def reduce_dimensionality(self, embeddings, n_components, method):
# Ensure we have enough samples for the requested components
n_samples = embeddings.shape[0]
# If only one sample, return it repeated to create a visible point
if n_samples == 1:
return np.tile(np.zeros((1, n_components)), (1, 1))
n_components = min(n_components, n_samples - 1) # Ensure k < N
if method == "pca":
reducer = PCA(n_components=n_components)
elif method == "umap":
# For very small datasets, fall back to PCA
if n_samples < 4:
reducer = PCA(n_components=n_components)
else:
# Adjust parameters based on data size
n_neighbors = min(15, n_samples - 1) # Ensure n_neighbors < n_samples
min_dist = 0.1 if n_samples > 4 else 0.5 # Increase min_dist for small datasets
reducer = umap.UMAP(
n_components=n_components,
n_neighbors=n_neighbors,
min_dist=min_dist,
metric='euclidean',
random_state=42
)
else:
raise ValueError("Invalid dimensionality reduction method")
# Convert to dense array if sparse
if hasattr(embeddings, 'toarray'):
embeddings = embeddings.toarray()
return reducer.fit_transform(embeddings)
def visualize_embeddings(self, model_choice, is_3d,
word1, word2, word3, word4, word5, word6, word7, word8,
positive_word1, positive_word2,
negative_word1, negative_word2,
dim_reduction_method):
words = [word1, word2, word3, word4, word5, word6, word7, word8]
words = [w for w in words if w.strip()]
positive_words = [w for w in [positive_word1, positive_word2] if w.strip()]
negative_words = [w for w in [negative_word1, negative_word2] if w.strip()]
embeddings = []
labels = []
for word in words:
emb = self.get_embedding(word)
if emb is not None:
embeddings.append(emb)
labels.append(word)
if positive_words or negative_words:
pos_embs = [self.get_embedding(w) for w in positive_words if self.get_embedding(w) is not None]
neg_embs = [self.get_embedding(w) for w in negative_words if self.get_embedding(w) is not None]
if pos_embs or neg_embs:
pos_sum = sum(pos_embs) if pos_embs else 0
neg_sum = sum(neg_embs) if neg_embs else 0
arithmetic_emb = pos_sum - neg_sum
embeddings.append(arithmetic_emb)
labels.append("Arithmetic Result")
if not embeddings:
return None
embeddings = np.array(embeddings)
# Reduce dimensionality
if is_3d:
embeddings_reduced = self.reduce_dimensionality(embeddings, 3, dim_reduction_method)
fig = px.scatter_3d(x=embeddings_reduced[:, 0],
y=embeddings_reduced[:, 1],
z=embeddings_reduced[:, 2],
text=labels,
title=f"3D Word Embeddings Visualization ({model_choice}) - {dim_reduction_method.upper()}")
fig.update_traces(textposition='top center')
return fig
else:
embeddings_reduced = self.reduce_dimensionality(embeddings, 2, dim_reduction_method)
fig = px.scatter(x=embeddings_reduced[:, 0],
y=embeddings_reduced[:, 1],
text=labels,
title=f"2D Word Embeddings Visualization ({model_choice}) - {dim_reduction_method.upper()}")
fig.update_traces(textposition='top center')
return fig
def visualize_similarity_heatmap(self, model_choice,
word1, word2, word3, word4, word5, word6, word7, word8):
words = [word1, word2, word3, word4, word5, word6, word7, word8]
words = [w for w in words if w.strip()]
embeddings = [self.get_embedding(word) for word in words if self.get_embedding(word) is not None]
if not embeddings:
return None
similarity_matrix = self.calculate_similarity_matrix(embeddings)
if similarity_matrix is None:
return None
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111)
cax = ax.matshow(similarity_matrix, interpolation='nearest')
fig.colorbar(cax)
ax.set_xticks(np.arange(len(words)))
ax.set_yticks(np.arange(len(words)))
ax.set_xticklabels(words, rotation=45, ha='left')
ax.set_yticklabels(words)
plt.title(f"Cosine Similarity Heatmap ({model_choice})")
return fig
# Initialize the visualizer
visualizer = EmbeddingVisualizer()
# Create Gradio interface
with gr.Blocks() as iface:
gr.Markdown("# Word Embedding Visualization")
with gr.Row():
with gr.Column():
model_choice = gr.Dropdown(
choices=["google/gemma-2b", "bert-large-uncased"],
value="google/gemma-2b",
label="Select Model"
)
load_status = gr.Textbox(label="Model Status", interactive=False)
is_3d = gr.Checkbox(label="Use 3D Visualization", value=False)
dim_reduction_method = gr.Radio(
choices=["pca", "umap"],
value="pca",
label="Dimensionality Reduction Method"
)
with gr.Column():
word1 = gr.Textbox(label="Word 1")
word2 = gr.Textbox(label="Word 2")
word3 = gr.Textbox(label="Word 3")
word4 = gr.Textbox(label="Word 4")
word5 = gr.Textbox(label="Word 5")
word6 = gr.Textbox(label="Word 6")
word7 = gr.Textbox(label="Word 7")
word8 = gr.Textbox(label="Word 8")
with gr.Column():
positive_word1 = gr.Textbox(label="Positive Word 1")
positive_word2 = gr.Textbox(label="Positive Word 2")
negative_word1 = gr.Textbox(label="Negative Word 1")
negative_word2 = gr.Textbox(label="Negative Word 2")
with gr.Tabs():
with gr.Tab("Scatter Plot"):
plot_output = gr.Plot()
with gr.Tab("Similarity Heatmap"):
heatmap_output = gr.Plot()
# Load model when selected
model_choice.change(
fn=visualizer.load_model,
inputs=[model_choice],
outputs=[load_status]
)
# Update visualization when any input changes
inputs = [
model_choice, is_3d,
word1, word2, word3, word4, word5, word6, word7, word8,
positive_word1, positive_word2,
negative_word1, negative_word2,
dim_reduction_method
]
for input_component in inputs:
input_component.change(
fn=visualizer.visualize_embeddings,
inputs=inputs,
outputs=[plot_output]
)
similarity_inputs = [model_choice,
word1, word2, word3, word4, word5, word6, word7, word8]
for input_component in similarity_inputs:
input_component.change(
fn=visualizer.visualize_similarity_heatmap,
inputs=similarity_inputs,
outputs=[heatmap_output]
)
# Add Clear All button
clear_button = gr.Button("Clear All")
def clear_all():
return [""] * 12 # Returns empty strings for the 12 text input components
clear_button.click(
fn=clear_all,
inputs=[],
outputs=[word1, word2, word3, word4, word5, word6, word7, word8,
positive_word1, positive_word2,
negative_word1, negative_word2]
)
if __name__ == "__main__":
# Load initial model
visualizer.load_model("google/gemma-2b")
iface.launch()
|