Spaces:
Running
Running
baixianger
commited on
Commit
·
41cb4a2
1
Parent(s):
3526766
add retriever tool
Browse files- agent.py +70 -15
- requirements.txt +7 -1
- supabase_docs.csv +0 -0
- system_prompt.txt +3 -1
- test.ipynb +214 -45
agent.py
CHANGED
@@ -1,15 +1,22 @@
|
|
1 |
"""LangGraph Agent"""
|
2 |
-
import
|
3 |
-
from
|
4 |
-
from langgraph.graph import START, StateGraph
|
5 |
from langgraph.prebuilt import tools_condition
|
6 |
from langgraph.prebuilt import ToolNode
|
7 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
|
|
|
8 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
9 |
from langchain_community.document_loaders import WikipediaLoader
|
10 |
from langchain_community.document_loaders import ArxivLoader
|
|
|
|
|
11 |
from langchain_core.tools import tool
|
12 |
-
from
|
|
|
|
|
|
|
13 |
|
14 |
@tool
|
15 |
def multiply(a: int, b: int) -> int:
|
@@ -105,6 +112,25 @@ def arvix_search(query: str) -> str:
|
|
105 |
])
|
106 |
return {"arvix_results": formatted_search_docs}
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
tools = [
|
109 |
multiply,
|
110 |
add,
|
@@ -114,14 +140,9 @@ tools = [
|
|
114 |
wiki_search,
|
115 |
web_search,
|
116 |
arvix_search,
|
|
|
117 |
]
|
118 |
|
119 |
-
|
120 |
-
# Load environment variables from .env file
|
121 |
-
dotenv.load_dotenv()
|
122 |
-
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash")
|
123 |
-
llm_with_tools = llm.bind_tools(tools)
|
124 |
-
|
125 |
# load the system prompt from the file
|
126 |
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
127 |
system_prompt = f.read()
|
@@ -129,14 +150,35 @@ with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
|
129 |
# System message
|
130 |
sys_msg = SystemMessage(content=system_prompt)
|
131 |
|
132 |
-
|
133 |
-
def assistant(state: MessagesState):
|
134 |
-
"""Assistant node"""
|
135 |
-
return {"messages": [llm_with_tools.invoke([sys_msg] + state["messages"])]}
|
136 |
|
137 |
# Build graph function
|
138 |
-
def build_graph():
|
139 |
"""Build the graph"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
builder = StateGraph(MessagesState)
|
142 |
builder.add_node("assistant", assistant)
|
@@ -150,3 +192,16 @@ def build_graph():
|
|
150 |
|
151 |
# Compile graph
|
152 |
return builder.compile()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
"""LangGraph Agent"""
|
2 |
+
import os
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
from langgraph.graph import START, StateGraph, MessagesState
|
5 |
from langgraph.prebuilt import tools_condition
|
6 |
from langgraph.prebuilt import ToolNode
|
7 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
+
from langchain_groq import ChatGroq
|
9 |
+
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
10 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
11 |
from langchain_community.document_loaders import WikipediaLoader
|
12 |
from langchain_community.document_loaders import ArxivLoader
|
13 |
+
from langchain_community.vectorstores import SupabaseVectorStore
|
14 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
15 |
from langchain_core.tools import tool
|
16 |
+
from langchain.tools.retriever import create_retriever_tool
|
17 |
+
from supabase.client import Client, create_client
|
18 |
+
|
19 |
+
load_dotenv()
|
20 |
|
21 |
@tool
|
22 |
def multiply(a: int, b: int) -> int:
|
|
|
112 |
])
|
113 |
return {"arvix_results": formatted_search_docs}
|
114 |
|
115 |
+
# build a retriever tool
|
116 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
|
117 |
+
supabase: Client = create_client(
|
118 |
+
os.environ.get("SUPABASE_URL"),
|
119 |
+
os.environ.get("SUPABASE_SERVICE_KEY"))
|
120 |
+
vector_store = SupabaseVectorStore(
|
121 |
+
client=supabase,
|
122 |
+
embedding= embeddings,
|
123 |
+
table_name="documents",
|
124 |
+
query_name="match_documents_langchain",
|
125 |
+
)
|
126 |
+
question_retrieve_tool = create_retriever_tool(
|
127 |
+
vector_store.as_retriever(),
|
128 |
+
"Question Retriever",
|
129 |
+
"Find similar questions in the vector database for the given question.",
|
130 |
+
)
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
tools = [
|
135 |
multiply,
|
136 |
add,
|
|
|
140 |
wiki_search,
|
141 |
web_search,
|
142 |
arvix_search,
|
143 |
+
question_retrieve_tool
|
144 |
]
|
145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
# load the system prompt from the file
|
147 |
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
148 |
system_prompt = f.read()
|
|
|
150 |
# System message
|
151 |
sys_msg = SystemMessage(content=system_prompt)
|
152 |
|
153 |
+
|
|
|
|
|
|
|
154 |
|
155 |
# Build graph function
|
156 |
+
def build_graph(provider: str = "groq"):
|
157 |
"""Build the graph"""
|
158 |
+
# Load environment variables from .env file
|
159 |
+
if provider == "google":
|
160 |
+
# Google Gemini
|
161 |
+
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
162 |
+
elif provider == "groq":
|
163 |
+
# Groq https://console.groq.com/docs/models
|
164 |
+
llm = ChatGroq(model="gemma2-9b-it", temperature=0) # optional : qwen-qwq-32b
|
165 |
+
elif provider == "huggingface":
|
166 |
+
# TODO: Add huggingface endpoint
|
167 |
+
llm = ChatHuggingFace(
|
168 |
+
llm=HuggingFaceEndpoint(
|
169 |
+
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
|
170 |
+
temperature=0,
|
171 |
+
),
|
172 |
+
)
|
173 |
+
else:
|
174 |
+
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
|
175 |
+
# Bind tools to LLM
|
176 |
+
llm_with_tools = llm.bind_tools(tools)
|
177 |
+
|
178 |
+
# Node
|
179 |
+
def assistant(state: MessagesState):
|
180 |
+
"""Assistant node"""
|
181 |
+
return {"messages": [llm_with_tools.invoke([sys_msg] + state["messages"])]}
|
182 |
|
183 |
builder = StateGraph(MessagesState)
|
184 |
builder.add_node("assistant", assistant)
|
|
|
192 |
|
193 |
# Compile graph
|
194 |
return builder.compile()
|
195 |
+
|
196 |
+
# test
|
197 |
+
if __name__ == "__main__":
|
198 |
+
question = "Who nominated the only Featured Article on English Wikipedia about a dinosaur that was promoted in November 2016?"
|
199 |
+
|
200 |
+
# Build the graph
|
201 |
+
graph = build_graph(provider="groq")
|
202 |
+
# Run the graph
|
203 |
+
messages = [HumanMessage(content=question)]
|
204 |
+
messages = graph.invoke({"messages": messages})
|
205 |
+
answer = messages[-1].content
|
206 |
+
print(f"Question: {question}")
|
207 |
+
print(f"{answer}")
|
requirements.txt
CHANGED
@@ -4,9 +4,15 @@ langchain
|
|
4 |
langchain-community
|
5 |
langchain-core
|
6 |
langchain-google-genai
|
|
|
|
|
7 |
langchain-tavily
|
|
|
8 |
langgraph
|
|
|
|
|
9 |
arxiv
|
10 |
pymupdf
|
11 |
wikipedia
|
12 |
-
|
|
|
|
4 |
langchain-community
|
5 |
langchain-core
|
6 |
langchain-google-genai
|
7 |
+
langchain-huggingface
|
8 |
+
langchain-groq
|
9 |
langchain-tavily
|
10 |
+
langchain-chroma
|
11 |
langgraph
|
12 |
+
huggingface_hub
|
13 |
+
supabase
|
14 |
arxiv
|
15 |
pymupdf
|
16 |
wikipedia
|
17 |
+
pgvector
|
18 |
+
python-dotenv
|
supabase_docs.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
system_prompt.txt
CHANGED
@@ -33,4 +33,6 @@ Tools:
|
|
33 |
Final Answer: Rd5
|
34 |
==========================
|
35 |
|
36 |
-
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
|
|
|
|
|
|
33 |
Final Answer: Rd5
|
34 |
==========================
|
35 |
|
36 |
+
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
|
37 |
+
FINAL ANSWER: [YOUR FINAL ANSWER].
|
38 |
+
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
test.ipynb
CHANGED
@@ -1,8 +1,16 @@
|
|
1 |
{
|
2 |
"cells": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"id": "14e3f417",
|
7 |
"metadata": {},
|
8 |
"outputs": [],
|
@@ -21,7 +29,7 @@
|
|
21 |
},
|
22 |
{
|
23 |
"cell_type": "code",
|
24 |
-
"execution_count":
|
25 |
"id": "5e2da6fc",
|
26 |
"metadata": {},
|
27 |
"outputs": [
|
@@ -30,45 +38,28 @@
|
|
30 |
"output_type": "stream",
|
31 |
"text": [
|
32 |
"==================================================\n",
|
33 |
-
"Task ID:
|
34 |
-
"Question:
|
35 |
"Level: 2\n",
|
36 |
-
"Final Answer:
|
37 |
"Annotator Metadata: \n",
|
38 |
" ├── Steps: \n",
|
39 |
-
" │ ├── 1.
|
40 |
-
" │ ├── 2.
|
41 |
-
" │ ├── 3.
|
42 |
-
" │ ├── 4.
|
43 |
-
" │ ├── 5.
|
44 |
-
" │ ├── 6.
|
45 |
-
" │ ├── 7.
|
46 |
-
" │ ├── 8.
|
47 |
-
" │ ├── 9.
|
48 |
-
" │ ├── 10.
|
49 |
-
" │ ├── 11.
|
50 |
-
" │ ├── 12.
|
51 |
-
"
|
52 |
-
" ├──
|
53 |
-
" ├── How long did this take?: 45 minutes\n",
|
54 |
" ├── Tools:\n",
|
55 |
-
" │ ├──
|
56 |
-
" │ ├── 2. Web browser\n",
|
57 |
-
" │ ├── 3. Microsoft Excel / Google Sheets\n",
|
58 |
-
" └── Number of tools: 3\n",
|
59 |
-
"==================================================\n",
|
60 |
-
"Task ID: cca530fc-4052-43b2-b130-b30968d8aa44\n",
|
61 |
-
"Question: Review the chess position provided in the image. It is black's turn. Provide the correct next move for black which guarantees a win. Please provide your response in algebraic notation.\n",
|
62 |
-
"Level: 1\n",
|
63 |
-
"Final Answer: Rd5\n",
|
64 |
-
"Annotator Metadata: \n",
|
65 |
-
" ├── Steps: \n",
|
66 |
-
" │ ├── Step 1: Evaluate the position of the pieces in the chess position\n",
|
67 |
-
" │ ├── Step 2: Report the best move available for black: \"Rd5\"\n",
|
68 |
-
" ├── Number of steps: 2\n",
|
69 |
-
" ├── How long did this take?: 10 minutes\n",
|
70 |
-
" ├── Tools:\n",
|
71 |
-
" │ ├── 1. Image recognition tools\n",
|
72 |
" └── Number of tools: 1\n",
|
73 |
"==================================================\n"
|
74 |
]
|
@@ -80,7 +71,7 @@
|
|
80 |
"\n",
|
81 |
"import random\n",
|
82 |
"# random.seed(42)\n",
|
83 |
-
"random_samples = random.sample(json_QA,
|
84 |
"for sample in random_samples:\n",
|
85 |
" print(\"=\" * 50)\n",
|
86 |
" print(f\"Task ID: {sample['task_id']}\")\n",
|
@@ -100,6 +91,118 @@
|
|
100 |
"print(\"=\" * 50)"
|
101 |
]
|
102 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
{
|
104 |
"cell_type": "code",
|
105 |
"execution_count": 31,
|
@@ -216,6 +319,14 @@
|
|
216 |
" print(f\" ├── {tool}: {count}\")"
|
217 |
]
|
218 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
{
|
220 |
"cell_type": "code",
|
221 |
"execution_count": 55,
|
@@ -301,22 +412,45 @@
|
|
301 |
},
|
302 |
{
|
303 |
"cell_type": "code",
|
304 |
-
"execution_count":
|
305 |
"id": "42fde0f8",
|
306 |
"metadata": {},
|
307 |
"outputs": [],
|
308 |
"source": [
|
309 |
"import dotenv\n",
|
310 |
-
"from langgraph.graph import MessagesState\n",
|
311 |
-
"from langchain_core.messages import HumanMessage, SystemMessage\n",
|
312 |
-
"from langgraph.graph import START, StateGraph\n",
|
313 |
"from langgraph.prebuilt import tools_condition\n",
|
314 |
"from langgraph.prebuilt import ToolNode\n",
|
315 |
"from langchain_google_genai import ChatGoogleGenerativeAI\n",
|
|
|
316 |
"from langchain_community.tools.tavily_search import TavilySearchResults\n",
|
317 |
"from langchain_community.document_loaders import WikipediaLoader\n",
|
318 |
"from langchain_community.document_loaders import ArxivLoader\n",
|
|
|
|
|
|
|
319 |
"from langchain_core.tools import tool\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
320 |
"\n",
|
321 |
"@tool\n",
|
322 |
"def multiply(a: int, b: int) -> int:\n",
|
@@ -412,6 +546,20 @@
|
|
412 |
" ])\n",
|
413 |
" return {\"arvix_results\": formatted_search_docs}\n",
|
414 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
415 |
"tools = [\n",
|
416 |
" multiply,\n",
|
417 |
" add,\n",
|
@@ -421,11 +569,9 @@
|
|
421 |
" wiki_search,\n",
|
422 |
" web_search,\n",
|
423 |
" arvix_search,\n",
|
|
|
424 |
"]\n",
|
425 |
"\n",
|
426 |
-
"\n",
|
427 |
-
"# Load environment variables from .env file\n",
|
428 |
-
"dotenv.load_dotenv()\n",
|
429 |
"llm = ChatGoogleGenerativeAI(model=\"gemini-2.0-flash\")\n",
|
430 |
"llm_with_tools = llm.bind_tools(tools)"
|
431 |
]
|
@@ -489,6 +635,29 @@
|
|
489 |
"\n",
|
490 |
"display(Image(graph.get_graph(xray=True).draw_mermaid_png()))"
|
491 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
492 |
}
|
493 |
],
|
494 |
"metadata": {
|
|
|
1 |
{
|
2 |
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "d0cc4adf",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"### Question data"
|
9 |
+
]
|
10 |
+
},
|
11 |
{
|
12 |
"cell_type": "code",
|
13 |
+
"execution_count": 2,
|
14 |
"id": "14e3f417",
|
15 |
"metadata": {},
|
16 |
"outputs": [],
|
|
|
29 |
},
|
30 |
{
|
31 |
"cell_type": "code",
|
32 |
+
"execution_count": 3,
|
33 |
"id": "5e2da6fc",
|
34 |
"metadata": {},
|
35 |
"outputs": [
|
|
|
38 |
"output_type": "stream",
|
39 |
"text": [
|
40 |
"==================================================\n",
|
41 |
+
"Task ID: ed58682d-bc52-4baa-9eb0-4eb81e1edacc\n",
|
42 |
+
"Question: What is the last word before the second chorus of the King of Pop's fifth single from his sixth studio album?\n",
|
43 |
"Level: 2\n",
|
44 |
+
"Final Answer: stare\n",
|
45 |
"Annotator Metadata: \n",
|
46 |
" ├── Steps: \n",
|
47 |
+
" │ ├── 1. Google searched \"King of Pop\".\n",
|
48 |
+
" │ ├── 2. Clicked on Michael Jackson's Wikipedia.\n",
|
49 |
+
" │ ├── 3. Scrolled down to \"Discography\".\n",
|
50 |
+
" │ ├── 4. Clicked on the sixth album, \"Thriller\".\n",
|
51 |
+
" │ ├── 5. Looked under \"Singles from Thriller\".\n",
|
52 |
+
" │ ├── 6. Clicked on the fifth single, \"Human Nature\".\n",
|
53 |
+
" │ ├── 7. Google searched \"Human Nature Michael Jackson Lyrics\".\n",
|
54 |
+
" │ ├── 8. Looked at the opening result with full lyrics sourced by Musixmatch.\n",
|
55 |
+
" │ ├── 9. Looked for repeating lyrics to determine the chorus.\n",
|
56 |
+
" │ ├── 10. Determined the chorus begins with \"If they say\" and ends with \"Does he do me that way?\"\n",
|
57 |
+
" │ ├── 11. Found the second instance of the chorus within the lyrics.\n",
|
58 |
+
" │ ├── 12. Noted the last word before the second chorus - \"stare\".\n",
|
59 |
+
" ├── Number of steps: 12\n",
|
60 |
+
" ├── How long did this take?: 20 minutes\n",
|
|
|
61 |
" ├── Tools:\n",
|
62 |
+
" │ ├── Web Browser\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
" └── Number of tools: 1\n",
|
64 |
"==================================================\n"
|
65 |
]
|
|
|
71 |
"\n",
|
72 |
"import random\n",
|
73 |
"# random.seed(42)\n",
|
74 |
+
"random_samples = random.sample(json_QA, 1)\n",
|
75 |
"for sample in random_samples:\n",
|
76 |
" print(\"=\" * 50)\n",
|
77 |
" print(f\"Task ID: {sample['task_id']}\")\n",
|
|
|
91 |
"print(\"=\" * 50)"
|
92 |
]
|
93 |
},
|
94 |
+
{
|
95 |
+
"cell_type": "code",
|
96 |
+
"execution_count": 48,
|
97 |
+
"id": "4bb02420",
|
98 |
+
"metadata": {},
|
99 |
+
"outputs": [],
|
100 |
+
"source": [
|
101 |
+
"### build a vector database based on the metadata.jsonl\n",
|
102 |
+
"# https://python.langchain.com/docs/integrations/vectorstores/supabase/\n",
|
103 |
+
"import os\n",
|
104 |
+
"from dotenv import load_dotenv\n",
|
105 |
+
"from langchain_huggingface import HuggingFaceEmbeddings\n",
|
106 |
+
"from langchain_community.vectorstores import SupabaseVectorStore\n",
|
107 |
+
"from supabase.client import Client, create_client\n",
|
108 |
+
"\n",
|
109 |
+
"\n",
|
110 |
+
"load_dotenv()\n",
|
111 |
+
"embeddings = HuggingFaceEmbeddings(model_name=\"sentence-transformers/all-mpnet-base-v2\") # dim=768\n",
|
112 |
+
"\n",
|
113 |
+
"supabase_url = os.environ.get(\"SUPABASE_URL\")\n",
|
114 |
+
"supabase_key = os.environ.get(\"SUPABASE_SERVICE_KEY\")\n",
|
115 |
+
"supabase: Client = create_client(supabase_url, supabase_key)"
|
116 |
+
]
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"cell_type": "code",
|
120 |
+
"execution_count": null,
|
121 |
+
"id": "a070b955",
|
122 |
+
"metadata": {},
|
123 |
+
"outputs": [],
|
124 |
+
"source": [
|
125 |
+
"# wrap the metadata.jsonl's questions and answers into a list of document\n",
|
126 |
+
"from langchain.schema import Document\n",
|
127 |
+
"docs = []\n",
|
128 |
+
"for sample in json_QA:\n",
|
129 |
+
" content = f\"Question : {sample['Question']}\\n\\nFinal answer : {sample['Final answer']}\"\n",
|
130 |
+
" doc = {\n",
|
131 |
+
" \"content\" : content,\n",
|
132 |
+
" \"metadata\" : { # meatadata的格式必须时source键,否则会报错\n",
|
133 |
+
" \"source\" : sample['task_id']\n",
|
134 |
+
" },\n",
|
135 |
+
" \"embedding\" : embeddings.embed_query(content),\n",
|
136 |
+
" }\n",
|
137 |
+
" docs.append(doc)\n",
|
138 |
+
"\n",
|
139 |
+
"# upload the documents to the vector database\n",
|
140 |
+
"try:\n",
|
141 |
+
" response = (\n",
|
142 |
+
" supabase.table(\"documents\")\n",
|
143 |
+
" .insert(docs)\n",
|
144 |
+
" .execute()\n",
|
145 |
+
" )\n",
|
146 |
+
"except Exception as exception:\n",
|
147 |
+
" print(\"Error inserting data into Supabase:\", exception)\n",
|
148 |
+
"\n",
|
149 |
+
"# ALTERNATIVE : Save the documents (a list of dict) into a csv file, and manually upload it to Supabase\n",
|
150 |
+
"# import pandas as pd\n",
|
151 |
+
"# df = pd.DataFrame(docs)\n",
|
152 |
+
"# df.to_csv('supabase_docs.csv', index=False)"
|
153 |
+
]
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"cell_type": "code",
|
157 |
+
"execution_count": 54,
|
158 |
+
"id": "77fb9dbb",
|
159 |
+
"metadata": {},
|
160 |
+
"outputs": [],
|
161 |
+
"source": [
|
162 |
+
"# add items to vector database\n",
|
163 |
+
"vector_store = SupabaseVectorStore(\n",
|
164 |
+
" client=supabase,\n",
|
165 |
+
" embedding= embeddings,\n",
|
166 |
+
" table_name=\"documents\",\n",
|
167 |
+
" query_name=\"match_documents_langchain\",\n",
|
168 |
+
")\n",
|
169 |
+
"retriever = vector_store.as_retriever()"
|
170 |
+
]
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"cell_type": "code",
|
174 |
+
"execution_count": 55,
|
175 |
+
"id": "12a05971",
|
176 |
+
"metadata": {},
|
177 |
+
"outputs": [
|
178 |
+
{
|
179 |
+
"name": "stderr",
|
180 |
+
"output_type": "stream",
|
181 |
+
"text": [
|
182 |
+
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
|
183 |
+
"To disable this warning, you can either:\n",
|
184 |
+
"\t- Avoid using `tokenizers` before the fork if possible\n",
|
185 |
+
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
|
186 |
+
]
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"data": {
|
190 |
+
"text/plain": [
|
191 |
+
"Document(metadata={'source': '840bfca7-4f7b-481a-8794-c560c340185d'}, page_content='Question : On June 6, 2023, an article by Carolyn Collins Petersen was published in Universe Today. This article mentions a team that produced a paper about their observations, linked at the bottom of the article. Find this paper. Under what NASA award number was the work performed by R. G. Arendt supported by?\\n\\nFinal answer : 80GSFC21M0002')"
|
192 |
+
]
|
193 |
+
},
|
194 |
+
"execution_count": 55,
|
195 |
+
"metadata": {},
|
196 |
+
"output_type": "execute_result"
|
197 |
+
}
|
198 |
+
],
|
199 |
+
"source": [
|
200 |
+
"query = \"On June 6, 2023, an article by Carolyn Collins Petersen was published in Universe Today. This article mentions a team that produced a paper about their observations, linked at the bottom of the article. Find this paper. Under what NASA award number was the work performed by R. G. Arendt supported by?\"\n",
|
201 |
+
"# matched_docs = vector_store.similarity_search(query, 2)\n",
|
202 |
+
"docs = retriever.invoke(query)\n",
|
203 |
+
"docs[0]"
|
204 |
+
]
|
205 |
+
},
|
206 |
{
|
207 |
"cell_type": "code",
|
208 |
"execution_count": 31,
|
|
|
319 |
" print(f\" ├── {tool}: {count}\")"
|
320 |
]
|
321 |
},
|
322 |
+
{
|
323 |
+
"cell_type": "markdown",
|
324 |
+
"id": "5efee12a",
|
325 |
+
"metadata": {},
|
326 |
+
"source": [
|
327 |
+
"#### Graph"
|
328 |
+
]
|
329 |
+
},
|
330 |
{
|
331 |
"cell_type": "code",
|
332 |
"execution_count": 55,
|
|
|
412 |
},
|
413 |
{
|
414 |
"cell_type": "code",
|
415 |
+
"execution_count": null,
|
416 |
"id": "42fde0f8",
|
417 |
"metadata": {},
|
418 |
"outputs": [],
|
419 |
"source": [
|
420 |
"import dotenv\n",
|
421 |
+
"from langgraph.graph import MessagesState, START, StateGraph\n",
|
|
|
|
|
422 |
"from langgraph.prebuilt import tools_condition\n",
|
423 |
"from langgraph.prebuilt import ToolNode\n",
|
424 |
"from langchain_google_genai import ChatGoogleGenerativeAI\n",
|
425 |
+
"from langchain_huggingface import HuggingFaceEmbeddings\n",
|
426 |
"from langchain_community.tools.tavily_search import TavilySearchResults\n",
|
427 |
"from langchain_community.document_loaders import WikipediaLoader\n",
|
428 |
"from langchain_community.document_loaders import ArxivLoader\n",
|
429 |
+
"from langchain_community.vectorstores import SupabaseVectorStore\n",
|
430 |
+
"from langchain.tools.retriever import create_retriever_tool\n",
|
431 |
+
"from langchain_core.messages import HumanMessage, SystemMessage\n",
|
432 |
"from langchain_core.tools import tool\n",
|
433 |
+
"from supabase.client import Client, create_client\n",
|
434 |
+
"\n",
|
435 |
+
"# Define the retriever from supabase\n",
|
436 |
+
"load_dotenv()\n",
|
437 |
+
"embeddings = HuggingFaceEmbeddings(model_name=\"sentence-transformers/all-mpnet-base-v2\") # dim=768\n",
|
438 |
+
"\n",
|
439 |
+
"supabase_url = os.environ.get(\"SUPABASE_URL\")\n",
|
440 |
+
"supabase_key = os.environ.get(\"SUPABASE_SERVICE_KEY\")\n",
|
441 |
+
"supabase: Client = create_client(supabase_url, supabase_key)\n",
|
442 |
+
"vector_store = SupabaseVectorStore(\n",
|
443 |
+
" client=supabase,\n",
|
444 |
+
" embedding= embeddings,\n",
|
445 |
+
" table_name=\"documents\",\n",
|
446 |
+
" query_name=\"match_documents_langchain\",\n",
|
447 |
+
")\n",
|
448 |
+
"\n",
|
449 |
+
"question_retrieve_tool = create_retriever_tool(\n",
|
450 |
+
" vector_store.as_retriever(),\n",
|
451 |
+
" \"Question Retriever\",\n",
|
452 |
+
" \"Find similar questions in the vector database for the given question.\",\n",
|
453 |
+
")\n",
|
454 |
"\n",
|
455 |
"@tool\n",
|
456 |
"def multiply(a: int, b: int) -> int:\n",
|
|
|
546 |
" ])\n",
|
547 |
" return {\"arvix_results\": formatted_search_docs}\n",
|
548 |
"\n",
|
549 |
+
"@tool\n",
|
550 |
+
"def similar_question_search(question: str) -> str:\n",
|
551 |
+
" \"\"\"Search the vector database for similar questions and return the first results.\n",
|
552 |
+
" \n",
|
553 |
+
" Args:\n",
|
554 |
+
" question: the question human provided.\"\"\"\n",
|
555 |
+
" matched_docs = vector_store.similarity_search(query, 3)\n",
|
556 |
+
" formatted_search_docs = \"\\n\\n---\\n\\n\".join(\n",
|
557 |
+
" [\n",
|
558 |
+
" f'<Document source=\"{doc.metadata[\"source\"]}\" page=\"{doc.metadata.get(\"page\", \"\")}\"/>\\n{doc.page_content[:1000]}\\n</Document>'\n",
|
559 |
+
" for doc in matched_docs\n",
|
560 |
+
" ])\n",
|
561 |
+
" return {\"similar_questions\": formatted_search_docs}\n",
|
562 |
+
"\n",
|
563 |
"tools = [\n",
|
564 |
" multiply,\n",
|
565 |
" add,\n",
|
|
|
569 |
" wiki_search,\n",
|
570 |
" web_search,\n",
|
571 |
" arvix_search,\n",
|
572 |
+
" question_retrieve_tool\n",
|
573 |
"]\n",
|
574 |
"\n",
|
|
|
|
|
|
|
575 |
"llm = ChatGoogleGenerativeAI(model=\"gemini-2.0-flash\")\n",
|
576 |
"llm_with_tools = llm.bind_tools(tools)"
|
577 |
]
|
|
|
635 |
"\n",
|
636 |
"display(Image(graph.get_graph(xray=True).draw_mermaid_png()))"
|
637 |
]
|
638 |
+
},
|
639 |
+
{
|
640 |
+
"cell_type": "code",
|
641 |
+
"execution_count": null,
|
642 |
+
"id": "5987d58c",
|
643 |
+
"metadata": {},
|
644 |
+
"outputs": [],
|
645 |
+
"source": [
|
646 |
+
"question = \"\"\n",
|
647 |
+
"messages = [HumanMessage(content=question)]\n",
|
648 |
+
"messages = graph.invoke({\"messages\": messages})"
|
649 |
+
]
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"cell_type": "code",
|
653 |
+
"execution_count": null,
|
654 |
+
"id": "330cbf17",
|
655 |
+
"metadata": {},
|
656 |
+
"outputs": [],
|
657 |
+
"source": [
|
658 |
+
"for m in messages['messages']:\n",
|
659 |
+
" m.pretty_print()"
|
660 |
+
]
|
661 |
}
|
662 |
],
|
663 |
"metadata": {
|