Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PyPDF2 import PdfReader
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
5 |
+
from langchain.vectorstores import FAISS
|
6 |
+
from langchain.chains import RetrievalQA
|
7 |
+
from langchain.llms import HuggingFacePipeline
|
8 |
+
import torch
|
9 |
+
from transformers import pipeline
|
10 |
+
|
11 |
+
# Load a smaller LLM (e.g., Zephyr-7B or Mistral-7B)
|
12 |
+
def load_llm():
|
13 |
+
model_name = "HuggingFaceH4/zephyr-7b-alpha" # Replace with your preferred model
|
14 |
+
pipe = pipeline("text-generation", model=model_name, torch_dtype=torch.float16, device_map="auto")
|
15 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
16 |
+
return llm
|
17 |
+
|
18 |
+
# Extract text from PDF
|
19 |
+
def extract_text_from_pdf(file):
|
20 |
+
reader = PdfReader(file)
|
21 |
+
text = ""
|
22 |
+
for page in reader.pages:
|
23 |
+
text += page.extract_text()
|
24 |
+
return text
|
25 |
+
|
26 |
+
# Split text into chunks
|
27 |
+
def split_text(text, chunk_size=1000, chunk_overlap=200):
|
28 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
29 |
+
chunks = splitter.split_text(text)
|
30 |
+
return chunks
|
31 |
+
|
32 |
+
# Create embeddings and vector store
|
33 |
+
def create_vector_store(chunks):
|
34 |
+
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
35 |
+
vector_store = FAISS.from_texts(chunks, embeddings)
|
36 |
+
return vector_store
|
37 |
+
|
38 |
+
# Query the PDF
|
39 |
+
def query_pdf(vector_store, query, llm):
|
40 |
+
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=vector_store.as_retriever())
|
41 |
+
result = qa.run(query)
|
42 |
+
return result
|
43 |
+
|
44 |
+
# Streamlit App
|
45 |
+
def main():
|
46 |
+
st.title("Chat with PDF")
|
47 |
+
st.write("Upload a PDF and ask questions about it!")
|
48 |
+
|
49 |
+
# File uploader
|
50 |
+
uploaded_file = st.file_uploader("Upload a PDF", type="pdf")
|
51 |
+
if uploaded_file is None:
|
52 |
+
st.info("Using default PDF.")
|
53 |
+
uploaded_file = "default.pdf" # Add a default PDF
|
54 |
+
|
55 |
+
# Extract text
|
56 |
+
text = extract_text_from_pdf(uploaded_file)
|
57 |
+
|
58 |
+
# Split text into chunks
|
59 |
+
chunks = split_text(text)
|
60 |
+
|
61 |
+
# Create vector store
|
62 |
+
vector_store = create_vector_store(chunks)
|
63 |
+
|
64 |
+
# Load LLM
|
65 |
+
llm = load_llm()
|
66 |
+
|
67 |
+
# Query translation options
|
68 |
+
query_method = st.selectbox(
|
69 |
+
"Query Translation Method",
|
70 |
+
["Multi-Query", "RAG Fusion", "Decomposition", "Step Back", "HyDE"],
|
71 |
+
help="Choose a method to improve query retrieval."
|
72 |
+
)
|
73 |
+
|
74 |
+
# User input
|
75 |
+
query = st.text_input("Ask a question about the PDF:")
|
76 |
+
if query:
|
77 |
+
# Query the PDF
|
78 |
+
result = query_pdf(vector_store, query, llm)
|
79 |
+
st.write("**Answer:**", result["answer"])
|
80 |
+
st.write("**Source Text:**", result["source_text"])
|
81 |
+
|
82 |
+
if __name__ == "__main__":
|
83 |
+
main()
|