Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,21 @@
|
|
1 |
import streamlit as st
|
2 |
import os
|
|
|
3 |
from langdetect import detect
|
4 |
from PyPDF2 import PdfReader
|
5 |
-
import
|
6 |
-
from
|
7 |
-
import
|
8 |
import numpy as np
|
9 |
|
10 |
-
# Load the
|
11 |
-
|
12 |
-
API_URL = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-alpha"
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
headers = {
|
20 |
-
"Authorization": f"Bearer {API_KEY}",
|
21 |
-
"Content-Type": "application/json",
|
22 |
-
}
|
23 |
payload = {
|
24 |
"inputs": prompt,
|
25 |
"parameters": {
|
@@ -28,18 +24,18 @@ def query_llm_api(prompt, max_new_tokens=1000, temperature=0.7, top_k=50):
|
|
28 |
"top_k": top_k,
|
29 |
},
|
30 |
}
|
31 |
-
response = requests.post(
|
32 |
if response.status_code == 200:
|
33 |
-
return response.json()["generated_text"]
|
34 |
else:
|
35 |
-
st.error(f"Error
|
36 |
return None
|
37 |
|
38 |
# Function to detect language
|
39 |
def detect_language(text):
|
40 |
try:
|
41 |
return detect(text)
|
42 |
-
except
|
43 |
return "en" # Default to English if detection fails
|
44 |
|
45 |
# Function to extract text from PDF with line and page numbers
|
@@ -47,52 +43,191 @@ def extract_text_from_pdf(pdf_file):
|
|
47 |
pdf_reader = PdfReader(pdf_file)
|
48 |
text_data = []
|
49 |
for page_num, page in enumerate(pdf_reader.pages):
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
})
|
58 |
return text_data
|
59 |
|
60 |
-
# Function to
|
61 |
-
def
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
+
import requests
|
4 |
from langdetect import detect
|
5 |
from PyPDF2 import PdfReader
|
6 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
7 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
+
from sklearn.neighbors import NearestNeighbors
|
9 |
import numpy as np
|
10 |
|
11 |
+
# Load the Hugging Face token from environment variables
|
12 |
+
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN") # Replace with your Hugging Face token
|
|
|
13 |
|
14 |
+
# Function to query the Hugging Face API
|
15 |
+
def query_huggingface_model(prompt, max_new_tokens=1000, temperature=0.7, top_k=50):
|
16 |
+
model_name = "HuggingFaceH4/zephyr-7b-alpha" # Replace with your preferred model
|
17 |
+
api_url = f"https://api-inference.huggingface.co/models/{model_name}"
|
18 |
+
headers = {"Authorization": f"Bearer {huggingface_token}"}
|
|
|
|
|
|
|
|
|
19 |
payload = {
|
20 |
"inputs": prompt,
|
21 |
"parameters": {
|
|
|
24 |
"top_k": top_k,
|
25 |
},
|
26 |
}
|
27 |
+
response = requests.post(api_url, headers=headers, json=payload)
|
28 |
if response.status_code == 200:
|
29 |
+
return response.json()[0]["generated_text"]
|
30 |
else:
|
31 |
+
st.error(f"Error: {response.status_code} - {response.text}")
|
32 |
return None
|
33 |
|
34 |
# Function to detect language
|
35 |
def detect_language(text):
|
36 |
try:
|
37 |
return detect(text)
|
38 |
+
except:
|
39 |
return "en" # Default to English if detection fails
|
40 |
|
41 |
# Function to extract text from PDF with line and page numbers
|
|
|
43 |
pdf_reader = PdfReader(pdf_file)
|
44 |
text_data = []
|
45 |
for page_num, page in enumerate(pdf_reader.pages):
|
46 |
+
lines = page.extract_text().split('\n')
|
47 |
+
for line_num, line in enumerate(lines):
|
48 |
+
text_data.append({
|
49 |
+
"page": page_num + 1,
|
50 |
+
"line": line_num + 1,
|
51 |
+
"content": line
|
52 |
+
})
|
|
|
53 |
return text_data
|
54 |
|
55 |
+
# Function to search for query in PDF content
|
56 |
+
def search_pdf_content(pdf_text_data, query):
|
57 |
+
results = []
|
58 |
+
for entry in pdf_text_data:
|
59 |
+
if query.lower() in entry["content"].lower():
|
60 |
+
results.append(entry)
|
61 |
+
return results
|
62 |
+
|
63 |
+
# Function to split text into chunks
|
64 |
+
def split_text_into_chunks(text, chunk_size=500):
|
65 |
+
words = text.split()
|
66 |
+
chunks = [" ".join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
|
67 |
+
return chunks
|
68 |
+
|
69 |
+
# Function to compute cosine similarity between query and document chunks
|
70 |
+
def compute_cosine_similarity(query, chunks):
|
71 |
+
vectorizer = TfidfVectorizer()
|
72 |
+
tfidf_matrix = vectorizer.fit_transform([query] + chunks)
|
73 |
+
cosine_similarities = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:]).flatten()
|
74 |
+
return cosine_similarities
|
75 |
+
|
76 |
+
# Function to find KNN-based similar documents
|
77 |
+
def find_knn_similar_documents(query, chunks, k=5):
|
78 |
+
vectorizer = TfidfVectorizer()
|
79 |
+
tfidf_matrix = vectorizer.fit_transform([query] + chunks)
|
80 |
+
knn = NearestNeighbors(n_neighbors=k, metric="cosine")
|
81 |
+
knn.fit(tfidf_matrix[1:])
|
82 |
+
distances, indices = knn.kneighbors(tfidf_matrix[0:1])
|
83 |
+
return indices.flatten(), distances.flatten()
|
84 |
+
|
85 |
+
# Default system prompts for each query translation method
|
86 |
+
DEFAULT_SYSTEM_PROMPTS = {
|
87 |
+
"Multi-Query": """You are an AI language model assistant. Your task is to generate five
|
88 |
+
different versions of the given user question to retrieve relevant documents from a vector
|
89 |
+
database. By generating multiple perspectives on the user question, your goal is to help
|
90 |
+
the user overcome some of the limitations of the distance-based similarity search.
|
91 |
+
Provide these alternative questions separated by newlines. Original question: {question}""",
|
92 |
+
"RAG Fusion": """You are an AI language model assistant. Your task is to combine multiple
|
93 |
+
queries into a single, refined query to improve retrieval accuracy. Original question: {question}""",
|
94 |
+
"Decomposition": """You are an AI language model assistant. Your task is to break down
|
95 |
+
the given user question into simpler sub-questions. Provide these sub-questions separated
|
96 |
+
by newlines. Original question: {question}""",
|
97 |
+
"Step Back": """You are an AI language model assistant. Your task is to refine the given
|
98 |
+
user question by taking a step back and asking a more general question. Original question: {question}""",
|
99 |
+
"HyDE": """You are an AI language model assistant. Your task is to generate a hypothetical
|
100 |
+
document that would be relevant to the given user question. Original question: {question}""",
|
101 |
+
}
|
102 |
+
|
103 |
+
# Streamlit App
|
104 |
+
def main():
|
105 |
+
st.title("RAG Model with Advanced Query Translation and Indexing")
|
106 |
+
st.write("Enter a prompt and get a response from the model.")
|
107 |
+
|
108 |
+
# Sidebar for options
|
109 |
+
st.sidebar.title("Options")
|
110 |
+
|
111 |
+
# PDF Upload
|
112 |
+
st.sidebar.header("Upload PDF")
|
113 |
+
pdf_file = st.sidebar.file_uploader("Upload a PDF file", type="pdf")
|
114 |
+
|
115 |
+
# Query Translation Options
|
116 |
+
st.sidebar.header("Query Translation")
|
117 |
+
query_translation = st.sidebar.selectbox(
|
118 |
+
"Select Query Translation Method",
|
119 |
+
["Multi-Query", "RAG Fusion", "Decomposition", "Step Back", "HyDE"]
|
120 |
+
)
|
121 |
+
|
122 |
+
# Indexing Options
|
123 |
+
st.sidebar.header("Indexing")
|
124 |
+
indexing_method = st.sidebar.selectbox(
|
125 |
+
"Select Indexing Method",
|
126 |
+
["Multi-Representation", "Raptors", "ColBERT"]
|
127 |
+
)
|
128 |
+
|
129 |
+
# Similarity Search Options
|
130 |
+
st.sidebar.header("Similarity Search")
|
131 |
+
similarity_method = st.sidebar.selectbox(
|
132 |
+
"Select Similarity Search Method",
|
133 |
+
["Cosine Similarity", "KNN"]
|
134 |
+
)
|
135 |
+
if similarity_method == "KNN":
|
136 |
+
k_value = st.sidebar.slider("Select K Value", 1, 10, 5)
|
137 |
+
|
138 |
+
# LLM Parameters
|
139 |
+
st.sidebar.header("LLM Parameters")
|
140 |
+
max_new_tokens = st.sidebar.slider("Max New Tokens", 10, 1000, 1000)
|
141 |
+
temperature = st.sidebar.slider("Temperature", 0.1, 1.0, 0.7)
|
142 |
+
top_k = st.sidebar.slider("Top K", 1, 100, 50)
|
143 |
+
|
144 |
+
# System Prompt
|
145 |
+
st.sidebar.header("System Prompt")
|
146 |
+
default_system_prompt = DEFAULT_SYSTEM_PROMPTS[query_translation]
|
147 |
+
system_prompt = st.sidebar.text_area("System Prompt", default_system_prompt)
|
148 |
+
|
149 |
+
# Main Content
|
150 |
+
st.header("Input Prompt")
|
151 |
+
prompt = st.text_input("Enter your prompt:")
|
152 |
+
if prompt:
|
153 |
+
st.write("**Prompt:**", prompt)
|
154 |
+
|
155 |
+
# Detect Language
|
156 |
+
language = detect_language(prompt)
|
157 |
+
st.write(f"**Detected Language:** {language}")
|
158 |
+
|
159 |
+
# Query Translation
|
160 |
+
if st.button("Apply Query Translation"):
|
161 |
+
st.write(f"**Applied Query Translation Method:** {query_translation}")
|
162 |
+
# Format the system prompt with the user's question
|
163 |
+
formatted_prompt = system_prompt.format(question=prompt)
|
164 |
+
st.write("**Formatted System Prompt:**", formatted_prompt)
|
165 |
+
|
166 |
+
# Query the Hugging Face model for query translation
|
167 |
+
translated_queries = query_huggingface_model(formatted_prompt, max_new_tokens, temperature, top_k)
|
168 |
+
if translated_queries:
|
169 |
+
st.write("**Translated Queries:**")
|
170 |
+
st.write(translated_queries.split("\n")[-1]) # Print only the updated question part
|
171 |
+
|
172 |
+
# Indexing
|
173 |
+
if st.button("Apply Indexing"):
|
174 |
+
st.write(f"**Applied Indexing Method:** {indexing_method}")
|
175 |
+
if pdf_file is not None:
|
176 |
+
# Extract and search PDF content
|
177 |
+
pdf_text_data = extract_text_from_pdf(pdf_file)
|
178 |
+
search_results = search_pdf_content(pdf_text_data, prompt)
|
179 |
+
|
180 |
+
if search_results:
|
181 |
+
st.write("**Relevant Content from PDF:**")
|
182 |
+
for result in search_results:
|
183 |
+
st.write(f"**Page {result['page']}, Line {result['line']}:** {result['content']}")
|
184 |
+
|
185 |
+
# Split text into chunks
|
186 |
+
chunks = split_text_into_chunks("\n".join([result["content"] for result in search_results]))
|
187 |
+
st.write("**Chunks Obtained from PDF:**")
|
188 |
+
for i, chunk in enumerate(chunks):
|
189 |
+
st.write(f"**Chunk {i + 1}:** {chunk}")
|
190 |
+
|
191 |
+
# Perform similarity search
|
192 |
+
if similarity_method == "Cosine Similarity":
|
193 |
+
st.write("**Cosine Similarity Results:**")
|
194 |
+
cosine_similarities = compute_cosine_similarity(prompt, chunks)
|
195 |
+
for i, similarity in enumerate(cosine_similarities):
|
196 |
+
st.write(f"**Chunk {i + 1} Similarity:** {similarity:.4f}")
|
197 |
+
elif similarity_method == "KNN":
|
198 |
+
st.write(f"**KNN Results (k={k_value}):**")
|
199 |
+
indices, distances = find_knn_similar_documents(prompt, chunks, k_value)
|
200 |
+
for i, (index, distance) in enumerate(zip(indices, distances)):
|
201 |
+
st.write(f"**Chunk {index + 1} Distance:** {distance:.4f}")
|
202 |
+
else:
|
203 |
+
st.write("**No relevant content found in the PDF.**")
|
204 |
+
else:
|
205 |
+
st.write("**No PDF uploaded.**")
|
206 |
+
|
207 |
+
# Generate Response
|
208 |
+
if st.button("Generate Response"):
|
209 |
+
if pdf_file is not None:
|
210 |
+
# Extract and search PDF content
|
211 |
+
pdf_text_data = extract_text_from_pdf(pdf_file)
|
212 |
+
search_results = search_pdf_content(pdf_text_data, prompt)
|
213 |
+
|
214 |
+
if search_results:
|
215 |
+
st.write("**Relevant Content from PDF:**")
|
216 |
+
for result in search_results:
|
217 |
+
st.write(f"**Page {result['page']}, Line {result['line']}:** \"{result['content']}\"")
|
218 |
+
|
219 |
+
# Generate response based on PDF content
|
220 |
+
pdf_context = "\n".join([result["content"] for result in search_results])
|
221 |
+
response = query_huggingface_model(f"Based on the following context:\n{pdf_context}\n\nAnswer this question: {prompt}", max_new_tokens, temperature, top_k)
|
222 |
+
else:
|
223 |
+
st.write("**No relevant content found in the PDF. Generating response without PDF context.**")
|
224 |
+
response = query_huggingface_model(prompt, max_new_tokens, temperature, top_k)
|
225 |
+
else:
|
226 |
+
st.write("**No PDF uploaded. Generating response without PDF context.**")
|
227 |
+
response = query_huggingface_model(prompt, max_new_tokens, temperature, top_k)
|
228 |
+
|
229 |
+
if response:
|
230 |
+
st.write("**Response:**", response)
|
231 |
+
|
232 |
+
if __name__ == "__main__":
|
233 |
+
main()
|