Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import streamlit as st
|
|
2 |
import os
|
3 |
import requests
|
4 |
from langdetect import detect
|
|
|
5 |
|
6 |
# Load the Hugging Face token from environment variables (secrets)
|
7 |
token = os.environ.get("Key2") # Replace "KEY2" with your secret key name
|
@@ -33,6 +34,32 @@ def detect_language(text):
|
|
33 |
except:
|
34 |
return "en" # Default to English if detection fails
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
# Streamlit App
|
37 |
def main():
|
38 |
st.title("RAG Model with Advanced Query Translation and Indexing")
|
@@ -41,6 +68,10 @@ def main():
|
|
41 |
# Sidebar for options
|
42 |
st.sidebar.title("Options")
|
43 |
|
|
|
|
|
|
|
|
|
44 |
# Query Translation Options
|
45 |
st.sidebar.header("Query Translation")
|
46 |
query_translation = st.sidebar.selectbox(
|
@@ -63,7 +94,7 @@ def main():
|
|
63 |
|
64 |
# System Prompt
|
65 |
st.sidebar.header("System Prompt")
|
66 |
-
default_system_prompt =
|
67 |
system_prompt = st.sidebar.text_area("System Prompt", default_system_prompt)
|
68 |
|
69 |
# Main Content
|
@@ -79,11 +110,14 @@ def main():
|
|
79 |
# Query Translation
|
80 |
if st.button("Apply Query Translation"):
|
81 |
st.write(f"**Applied Query Translation Method:** {query_translation}")
|
82 |
-
#
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
87 |
|
88 |
# Indexing
|
89 |
if st.button("Apply Indexing"):
|
@@ -93,11 +127,17 @@ def main():
|
|
93 |
if indexing_method == "ColBERT":
|
94 |
st.write("Indexing with ColBERT...")
|
95 |
|
96 |
-
# Query the Hugging Face API
|
97 |
if st.button("Generate Response"):
|
98 |
response = query_huggingface_api(prompt, max_new_tokens, temperature, top_k)
|
99 |
if response:
|
100 |
st.write("**Response:**", response)
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
if __name__ == "__main__":
|
103 |
main()
|
|
|
2 |
import os
|
3 |
import requests
|
4 |
from langdetect import detect
|
5 |
+
from PyPDF2 import PdfReader
|
6 |
|
7 |
# Load the Hugging Face token from environment variables (secrets)
|
8 |
token = os.environ.get("Key2") # Replace "KEY2" with your secret key name
|
|
|
34 |
except:
|
35 |
return "en" # Default to English if detection fails
|
36 |
|
37 |
+
# Function to extract text from PDF
|
38 |
+
def extract_text_from_pdf(pdf_file):
|
39 |
+
pdf_reader = PdfReader(pdf_file)
|
40 |
+
text = ""
|
41 |
+
for page in pdf_reader.pages:
|
42 |
+
text += page.extract_text()
|
43 |
+
return text
|
44 |
+
|
45 |
+
# Default system prompts for each query translation method
|
46 |
+
DEFAULT_SYSTEM_PROMPTS = {
|
47 |
+
"Multi-Query": """You are an AI language model assistant. Your task is to generate five
|
48 |
+
different versions of the given user question to retrieve relevant documents from a vector
|
49 |
+
database. By generating multiple perspectives on the user question, your goal is to help
|
50 |
+
the user overcome some of the limitations of the distance-based similarity search.
|
51 |
+
Provide these alternative questions separated by newlines. Original question: {question}""",
|
52 |
+
"RAG Fusion": """You are an AI language model assistant. Your task is to combine multiple
|
53 |
+
queries into a single, refined query to improve retrieval accuracy. Original question: {question}""",
|
54 |
+
"Decomposition": """You are an AI language model assistant. Your task is to break down
|
55 |
+
the given user question into simpler sub-questions. Provide these sub-questions separated
|
56 |
+
by newlines. Original question: {question}""",
|
57 |
+
"Step Back": """You are an AI language model assistant. Your task is to refine the given
|
58 |
+
user question by taking a step back and asking a more general question. Original question: {question}""",
|
59 |
+
"HyDE": """You are an AI language model assistant. Your task is to generate a hypothetical
|
60 |
+
document that would be relevant to the given user question. Original question: {question}""",
|
61 |
+
}
|
62 |
+
|
63 |
# Streamlit App
|
64 |
def main():
|
65 |
st.title("RAG Model with Advanced Query Translation and Indexing")
|
|
|
68 |
# Sidebar for options
|
69 |
st.sidebar.title("Options")
|
70 |
|
71 |
+
# PDF Upload
|
72 |
+
st.sidebar.header("Upload PDF")
|
73 |
+
pdf_file = st.sidebar.file_uploader("Upload a PDF file", type="pdf")
|
74 |
+
|
75 |
# Query Translation Options
|
76 |
st.sidebar.header("Query Translation")
|
77 |
query_translation = st.sidebar.selectbox(
|
|
|
94 |
|
95 |
# System Prompt
|
96 |
st.sidebar.header("System Prompt")
|
97 |
+
default_system_prompt = DEFAULT_SYSTEM_PROMPTS[query_translation]
|
98 |
system_prompt = st.sidebar.text_area("System Prompt", default_system_prompt)
|
99 |
|
100 |
# Main Content
|
|
|
110 |
# Query Translation
|
111 |
if st.button("Apply Query Translation"):
|
112 |
st.write(f"**Applied Query Translation Method:** {query_translation}")
|
113 |
+
# Format the system prompt with the user's question
|
114 |
+
formatted_prompt = system_prompt.format(question=prompt)
|
115 |
+
st.write("**Formatted System Prompt:**", formatted_prompt)
|
116 |
+
|
117 |
+
# Query the Hugging Face API for query translation
|
118 |
+
translated_queries = query_huggingface_api(formatted_prompt, max_new_tokens, temperature, top_k)
|
119 |
+
if translated_queries:
|
120 |
+
st.write("**Translated Queries:**", translated_queries)
|
121 |
|
122 |
# Indexing
|
123 |
if st.button("Apply Indexing"):
|
|
|
127 |
if indexing_method == "ColBERT":
|
128 |
st.write("Indexing with ColBERT...")
|
129 |
|
130 |
+
# Query the Hugging Face API for final response
|
131 |
if st.button("Generate Response"):
|
132 |
response = query_huggingface_api(prompt, max_new_tokens, temperature, top_k)
|
133 |
if response:
|
134 |
st.write("**Response:**", response)
|
135 |
|
136 |
+
# Display PDF text if uploaded
|
137 |
+
if pdf_file is not None:
|
138 |
+
st.header("PDF Content")
|
139 |
+
pdf_text = extract_text_from_pdf(pdf_file)
|
140 |
+
st.write(pdf_text)
|
141 |
+
|
142 |
if __name__ == "__main__":
|
143 |
main()
|