File size: 1,317 Bytes
ffb6d48
80ed1fd
ffb6d48
 
80ed1fd
ffb6d48
 
b5ac3f0
ffb6d48
 
 
 
 
b5ac3f0
 
ffb6d48
 
 
 
b5ac3f0
7bd332d
b0c8c8c
fb6c4a2
5560955
b0c8c8c
ffb6d48
 
 
 
 
 
 
 
 
 
 
 
5560955
ffb6d48
 
cda75bc
8756a40
ffb6d48
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from transformers import AutoTokenizer, AutoModelForCausalLM
import os
import torch


# Check if CUDA is available for faster inference
device = 'cuda' if torch.cuda.is_available() else 'cpu'

# Load the tokenizer and model once, outside of the function
huggingface_token = os.environ.get("KEY2")
tokenizer = AutoTokenizer.from_pretrained(
    "meta-llama/Llama-3.2-1B",
    use_auth_token=huggingface_token

)
model = AutoModelForCausalLM.from_pretrained(
    "meta-llama/Llama-3.2-1B",
    use_auth_token=huggingface_token
).to(device)

def modelFeedback(ats_score, resume_data, job_description):
    """
    """

    try:
        # Tokenize the input
        input_ids = tokenizer.encode(input_prompt, return_tensors="pt").to(device)
        
        # Disable gradient calculation for faster inference
        with torch.no_grad():
            # Generate the output
            output = model.generate(
                input_ids,
                max_length=1500,
                temperature=0.01,
                pad_token_id=tokenizer.eos_token_id  # Ensure padding works properly
            )
        
        # Decode the output
        response_text = tokenizer.decode(output[0], skip_special_tokens=True)
        return response_text
    except Exception as e:
        print(f"Error during generation: {e}")