Spaces:
Sleeping
Sleeping
Update summarizer.py
Browse files- summarizer.py +36 -36
summarizer.py
CHANGED
@@ -1,36 +1,36 @@
|
|
1 |
-
import os
|
2 |
-
import base64
|
3 |
-
from langchain.docstore.document import Document
|
4 |
-
from langchain.text_splitter import CharacterTextSplitter
|
5 |
-
from langchain.llms.openai import OpenAI
|
6 |
-
from langchain.chains.summarize import load_summarize_chain
|
7 |
-
from langchain.document_loaders import UnstructuredURLLoader
|
8 |
-
import nltk
|
9 |
-
import openai
|
10 |
-
|
11 |
-
nltk.download('punkt')
|
12 |
-
OPENAI_API_KEY = "
|
13 |
-
|
14 |
-
|
15 |
-
def create_brand_html(brand_link):
|
16 |
-
urls = [brand_link]
|
17 |
-
loader = UnstructuredURLLoader(urls=urls)
|
18 |
-
data = loader.load()
|
19 |
-
chunk_size = 3000
|
20 |
-
chunk_overlap = 200
|
21 |
-
text_splitter = CharacterTextSplitter(
|
22 |
-
chunk_size=chunk_size,
|
23 |
-
chunk_overlap=chunk_overlap,
|
24 |
-
length_function=len,
|
25 |
-
)
|
26 |
-
texts = text_splitter.split_text(data[0].page_content)
|
27 |
-
docs = [Document(page_content=t) for t in texts[:]]
|
28 |
-
return docs
|
29 |
-
|
30 |
-
|
31 |
-
def create_langchain_openai_query(docs):
|
32 |
-
openai.api_key = OPENAI_API_KEY
|
33 |
-
llm = OpenAI(temperature=0, openai_api_key=openai.api_key)
|
34 |
-
map_reduce_chain = load_summarize_chain(llm, chain_type="map_reduce")
|
35 |
-
output = map_reduce_chain.run(docs)
|
36 |
-
return output
|
|
|
1 |
+
import os
|
2 |
+
import base64
|
3 |
+
from langchain.docstore.document import Document
|
4 |
+
from langchain.text_splitter import CharacterTextSplitter
|
5 |
+
from langchain.llms.openai import OpenAI
|
6 |
+
from langchain.chains.summarize import load_summarize_chain
|
7 |
+
from langchain.document_loaders import UnstructuredURLLoader
|
8 |
+
import nltk
|
9 |
+
import openai
|
10 |
+
|
11 |
+
nltk.download('punkt')
|
12 |
+
OPENAI_API_KEY = ""
|
13 |
+
|
14 |
+
|
15 |
+
def create_brand_html(brand_link):
|
16 |
+
urls = [brand_link]
|
17 |
+
loader = UnstructuredURLLoader(urls=urls)
|
18 |
+
data = loader.load()
|
19 |
+
chunk_size = 3000
|
20 |
+
chunk_overlap = 200
|
21 |
+
text_splitter = CharacterTextSplitter(
|
22 |
+
chunk_size=chunk_size,
|
23 |
+
chunk_overlap=chunk_overlap,
|
24 |
+
length_function=len,
|
25 |
+
)
|
26 |
+
texts = text_splitter.split_text(data[0].page_content)
|
27 |
+
docs = [Document(page_content=t) for t in texts[:]]
|
28 |
+
return docs
|
29 |
+
|
30 |
+
|
31 |
+
def create_langchain_openai_query(docs):
|
32 |
+
openai.api_key = OPENAI_API_KEY
|
33 |
+
llm = OpenAI(temperature=0, openai_api_key=openai.api_key)
|
34 |
+
map_reduce_chain = load_summarize_chain(llm, chain_type="map_reduce")
|
35 |
+
output = map_reduce_chain.run(docs)
|
36 |
+
return output
|