Spaces:
Sleeping
Sleeping
File size: 24,582 Bytes
87fcfdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
import streamlit as st
import os
from prompts import prompts
from constants import JSON_SCHEMA_FOR_GPT, UPDATED_MODEL_ONLY_SCHEMA, JSON_SCHEMA_FOR_LOC_ONLY
from gpt import runAssistant, checkRunStatus, retrieveThread, createAssistant, saveFileOpenAI, startAssistantThread, \
create_chat_completion_request_open_ai_for_summary, addMessageToThread, create_image_completion_request_gpt
from summarizer import create_brand_html, create_langchain_openai_query
from theme import flux_generated_image, flux_generated_image_seed
import time
from PIL import Image
import io
def process_run(st, thread_id, assistant_id):
run_id = runAssistant(thread_id, assistant_id)
status = 'running'
while status != 'completed':
with st.spinner('. . .'):
time.sleep(20)
status = checkRunStatus(thread_id, run_id)
thread_messages = retrieveThread(thread_id)
for message in thread_messages:
if not message['role'] == 'user':
return message["content"]
else:
pass
def page1():
st.title("Upload Product")
st.markdown("<h2 style='color:#FF5733; font-weight:bold;'>Add a Product</h2>", unsafe_allow_html=True)
st.markdown("<p style='color:#444;'>Upload your product images, more images you upload better the AI learns</p>",
unsafe_allow_html=True)
uploaded_files = st.file_uploader("Upload Images", accept_multiple_files=True, key="uploaded_files_key")
product_description = st.text_area("Describe the product", value=st.session_state.get("product_description", ""))
col1, col2 = st.columns([1, 2])
with col1:
if st.button("Save"):
st.session_state['uploaded_files'] = uploaded_files
st.session_state['product_description'] = product_description
st.success("Product information saved!")
with col2:
if st.button("Add product and move to next page"):
if not uploaded_files:
st.warning("Please upload at least one image.")
elif not product_description:
st.warning("Please provide a description for the product.")
else:
st.session_state['uploaded_files'] = uploaded_files
st.session_state['product_description'] = product_description
st.session_state['page'] = "Page 2"
def page2():
st.title("Tell us about your shoot preference")
st.markdown("<h3 style='color:#444;'>What are you shooting today?</h3>", unsafe_allow_html=True)
shoot_type = st.radio("Select your shoot type:", ["Editorial", "Catalogue"], index=0)
st.session_state['shoot_type'] = shoot_type
brand_link = st.text_input("Add your brand link:", value=st.session_state.get("brand_link", ""))
st.session_state['brand_link'] = brand_link
if st.button("Get Brand Summary"):
if brand_link:
brand_summary_html = create_brand_html(brand_link)
brand_summary = create_langchain_openai_query(brand_summary_html)
st.session_state['brand_summary'] = brand_summary
st.success("Brand summary fetched!")
else:
st.warning("Please add a brand link.")
brand_summary_value = st.session_state.get('brand_summary', "")
editable_summary = st.text_area("Brand Summary:", value=brand_summary_value, height=100)
st.session_state['brand_summary'] = editable_summary
product_info = st.text_area("Tell us something about your product:", value=st.session_state.get("product_info", ""))
st.session_state['product_info'] = product_info
reference_images = st.file_uploader("Upload Reference Images", accept_multiple_files=True,
key="reference_images_key")
st.session_state['reference_images'] = reference_images
if st.button("Give Me Ideas"):
st.session_state['page'] = "Page 3"
def page3():
st.title("Scene Suggestions")
st.write("Based on your uploaded product and references!")
feedback = st.chat_input("Provide feedback:")
if not st.session_state.get("assistant_initialized", False):
assistant_id = createAssistant("You are a helpful assistant who is an expert in Fashion Shoots.")
updated_prompt = prompts["IDEA_GENERATION_PROMPT"].format(
brand_details=st.session_state["brand_summary"],
product_details=st.session_state["product_info"],
type_of_shoot=st.session_state["shoot_type"],
json_schema=JSON_SCHEMA_FOR_GPT,
product_name=st.session_state["product_description"]
)
file_locations = []
for uploaded_file in st.session_state['uploaded_files']:
bytes_data = uploaded_file.getvalue()
image = Image.open(io.BytesIO(bytes_data))
image.verify()
location = f"temp_image_{uploaded_file.name}"
with open(location, "wb") as f:
f.write(bytes_data)
file_locations.append(location)
image.close()
for uploaded_file in st.session_state['reference_images']:
bytes_data = uploaded_file.getvalue()
image = Image.open(io.BytesIO(bytes_data))
image.verify()
location = f"temp2_image_{uploaded_file.name}"
with open(location, "wb") as f:
f.write(bytes_data)
file_locations.append(location)
image.close()
file_ids = [saveFileOpenAI(location) for location in file_locations]
thread_id = startAssistantThread(file_ids, updated_prompt, "yes", "yes")
st.session_state.assistant_id = assistant_id
st.session_state.thread_id = thread_id
st.session_state.assistant_initialized = True
regenerate_images(thread_id, assistant_id)
if feedback:
if 'images' in st.session_state and 'descriptions' in st.session_state:
for image_path in st.session_state['images']:
os.remove(image_path)
del st.session_state['images']
del st.session_state['descriptions']
del st.session_state["json_descriptions"]
addMessageToThread(st.session_state.thread_id, feedback)
regenerate_images(st.session_state.thread_id, st.session_state.assistant_id)
selected_image_index = None
cols = st.columns(1)
for i in range(len(st.session_state["images"])):
with cols[i]:
st.image(st.session_state.images[i], caption=st.session_state.descriptions[i], use_column_width=True)
if st.radio(f"Select {i + 1}", [f"Select Image {i + 1}"], key=f"radio_{i}"):
selected_image_index = i
if selected_image_index is not None and st.button("Refine"):
st.session_state.selected_image_index = selected_image_index
st.session_state.selected_image = st.session_state.images[selected_image_index]
st.session_state.selected_text = st.session_state.descriptions[selected_image_index]
st.session_state['page'] = "Page 4"
if st.button("Go Back!"):
st.session_state.page = "Page 2"
def regenerate_images(thread_id, assistant_id):
"""Helper function to generate images and descriptions."""
response_from_process_list = []
for _ in range(1): # Assuming you generate 1 set of image/description
response_from_process = process_run(st, thread_id, assistant_id)
response_from_process_list.append(response_from_process)
summary_list = []
for final_response in response_from_process_list:
prompt_for_idea_summary = prompts["IDEA_SUMMARY_PROMPT"].format(
json_schema=str(final_response)
)
summary = create_chat_completion_request_open_ai_for_summary(prompt_for_idea_summary, "No")
summary_list.append(summary)
# Generate images based on the summaries
flux_generated_theme_image = []
for summary in summary_list:
theme_image = flux_generated_image(summary)
flux_generated_theme_image.append(theme_image["file_name"])
# Save the new images and descriptions in session state
st.session_state["images"] = flux_generated_theme_image
st.session_state["descriptions"] = summary_list
st.session_state["json_descriptions"] = response_from_process_list
def page4():
import json
selected_theme_text_by_user = st.session_state.json_descriptions[st.session_state.selected_image_index]
print(selected_theme_text_by_user)
schema_for_model_bg = {"type": "object",
"properties": {
"Model": {
"type": "string",
"description": "The model name or identifier."
},
"Background": {
"type": "string",
"description": "Description or type of the background."
}},
"required": ["Model", "Background"],
"additionalProperties": False
}
prompt_to_get_details = (f"You are provided with a brief of a Fashion Shoot : "
f"{st.session_state[\"json_descriptions\"]}.\n Now provide me a JSON which will"
f"have two keys ```Model``` and ```Background```. Provide all detail's"
f"present about model and background in the brief provided by you. Just provide a "
f"natural langauge description. I will use it as description of model and "
f"background needed by the brand Output JSON following the schema")
response_from_open_ai = create_chat_completion_request_open_ai_for_summary(prompt_to_get_details,
schema_name="model_bg",
json_schema=schema_for_model_bg,
json_mode="yes")
json_response_from_open_ai = json.loads(response_from_open_ai)
with (st.sidebar):
st.title(st.session_state["product_info"])
st.write("Product Image")
st.image(st.session_state['uploaded_files'])
st.text("Scene Suggestion:")
st.image(st.session_state.selected_image)
dimensions = st.text_input("Enter Dimensions e.g 3:4, 1:2", key="Dimensions")
seed = st.selectbox(
"Seed Preference",
("Fixed", "Random"),
)
if seed == "Fixed":
seed_number = st.number_input("Enter an integer:", min_value=1, max_value=100000, value=10, step=1)
else:
seed_number = 0
st.text("Thanks will take care")
model_preference = st.selectbox(
"Model Preference",
("Create Own/Edit Pre-filled", "Ideas", "Upload Reference"),
)
if model_preference == "Create Own/Edit Pre-filled":
pre_filled_model_details = st.text_area("Model Idea", value=json_response_from_open_ai["Model"],
key="Model Idea")
elif model_preference == "Ideas":
prompt_to_generate_idea = ("Your task is to create model ideas for shoot of a product of a brand. "
"The details about the brand: ```{brand_details}.\n The product: {product_name},"
"which is: ```{product_details}```.\n Reference images for the product and "
"brands shoot idea is already provided with you. Additionally brand wants to "
"have a ```{type_of_shoot}``` of the model. Now based on all provided details, "
"think step by step and provide your ideas about what type of model the brand"
"should need based on mentioned JSON format. Also provide a combined prompt "
"which the brand will use to create a shoot image. While creating the "
"combined prompt as mentioned in the JSON schema, do not miss any details you"
" mentioned in the JSON.")
updated_model_idea_gen_prompt = prompt_to_generate_idea.format(
brand_details=st.session_state["brand_summary"],
product_details=st.session_state["product_info"],
type_of_shoot=st.session_state["shoot_type"],
product_name=st.session_state["product_description"]
)
response_for_only_model = create_chat_completion_request_open_ai_for_summary(updated_model_idea_gen_prompt
, schema_name="model_only",
json_schema=
UPDATED_MODEL_ONLY_SCHEMA,
json_mode="yes")
pre_filled_model_details = st.text_area("Model Idea", value=response_for_only_model,
key="Model Idea")
else:
uploaded_files = st.file_uploader("Upload one Model Reference Image here",
accept_multiple_files=False, key="uploader")
bytes_data = uploaded_files.getvalue()
image = Image.open(io.BytesIO(bytes_data))
image.verify()
location = f"temp_image_{uploaded_files.name}"
with open(location, "wb") as f:
f.write(bytes_data)
image.close()
prompt_to_generate_idea = ("Follow this JSON Schema : {json_schema_model_only}."
"Your task is to create model ideas for shoot of a product of a brand. "
"The details about the brand: ```{brand_details}.\n The product: {product_name},"
"which is: ```{product_details}```.\n Reference images for the product and "
"brands shoot idea is already provided with you. Additionally brand wants to "
"have a ```{type_of_shoot}``` of the model. Now based on all provided details, "
"think step by step and provide your ideas about what type of model the brand"
"should need based on mentioned JSON format. Also provide a combined prompt "
"which the brand will use to create a shoot image. While creating the "
"combined prompt as mentioned in the JSON schema, do not miss any details you"
" mentioned in the JSON.")
updated_model_idea_gen_prompt = prompt_to_generate_idea.format(
json_schema_model_only=UPDATED_MODEL_ONLY_SCHEMA,
brand_details=st.session_state["brand_summary"],
product_details=st.session_state["product_info"],
type_of_shoot=st.session_state["shoot_type"],
product_name=st.session_state["product_description"]
)
json_response = create_image_completion_request_gpt(location, updated_model_idea_gen_prompt)
pre_filled_model_details = st.text_area("Model Idea", value=json_response,
key="Model Idea")
background_preference = st.selectbox(
"Background Preference",
("Create Own/Edit Pre-filled", "Ideas", "Upload Reference"),
)
if background_preference == "Create Own/Edit Pre-filled":
pre_filled_background_details = st.text_area("Background Idea",
value=json_response_from_open_ai["Background"],
key="Background Idea")
elif background_preference == "Ideas":
prompt_to_generate_idea = ("Follow this JSON Schema : {json_schema_background_only}."
"Your task is to create location/background ideas for shoot of a "
"product of a brand. "
"The details about the brand: ```{brand_details}.\n The product: {product_name},"
"which is: ```{product_details}```.\n Reference images for the product and "
"brands shoot idea is already provided with you. Additionally brand wants to "
"have a ```{type_of_shoot}``` of the model. Now based on all provided details, "
"think step by step and provide your ideas about what type of location the brand"
"should need based on mentioned JSON format. Also provide a combined prompt "
"which the brand will use to create a shoot image. While creating the "
"combined prompt as mentioned in the JSON schema, do not miss any details you"
" mentioned in the JSON.")
updated_bg_idea_gen_prompt = prompt_to_generate_idea.format(
json_schema_background_only=JSON_SCHEMA_FOR_LOC_ONLY,
brand_details=st.session_state["brand_summary"],
product_details=st.session_state["product_info"],
type_of_shoot=st.session_state["shoot_type"],
product_name=st.session_state["product_description"]
)
response_for_only_bg = create_chat_completion_request_open_ai_for_summary(updated_bg_idea_gen_prompt,
schema_name="bg_o",
json_schema=JSON_SCHEMA_FOR_LOC_ONLY,
json_mode="yes")
pre_filled_background_details = st.text_area("Background Idea", value=response_for_only_bg,
key="Background Idea")
else:
uploaded_files = st.file_uploader("Upload one Background Reference Image here",
accept_multiple_files=False, key="uploader")
bytes_data = uploaded_files.getvalue()
image = Image.open(io.BytesIO(bytes_data))
image.verify()
location = f"temp2_image_{uploaded_files.name}"
with open(location, "wb") as f:
f.write(bytes_data)
image.close()
prompt_to_generate_idea = ("Follow this JSON Schema : {json_schema_bg_only}."
"Your task is to create Background/Location ideas for shoot of a "
"product of a brand. "
"The details about the brand: ```{brand_details}.\n The product: {product_name},"
"which is: ```{product_details}```.\n Reference images for the product and "
"brands shoot idea is already provided with you. Additionally brand wants to "
"have a ```{type_of_shoot}``` of the model. Now based on all provided details, "
"think step by step and provide your ideas about what type of location the brand"
"should need based on mentioned JSON format. Also provide a combined prompt "
"which the brand will use to create a shoot image. While creating the "
"combined prompt as mentioned in the JSON schema, do not miss any details you"
" mentioned in the JSON.")
updated_bg_idea_gen_prompt = prompt_to_generate_idea.format(
json_schema_bg_only=JSON_SCHEMA_FOR_LOC_ONLY,
brand_details=st.session_state["brand_summary"],
product_details=st.session_state["product_info"],
type_of_shoot=st.session_state["shoot_type"],
product_name=st.session_state["product_description"]
)
json_response = create_image_completion_request_gpt(location, updated_bg_idea_gen_prompt)
pre_filled_background_details = st.text_area("Background Idea", value=json_response,
key="Background Idea")
start_chat = st.button("Start Chat")
if "mood_chat_messages" not in st.session_state:
st.session_state["mood_chat_messages"] = []
if seed and dimensions and model_preference and background_preference:
if start_chat:
final_mood_board_image_prompt = prompts["FINAL_PROMPT_GENERATION"].format(
brand_details=st.session_state["brand_summary"],
product_details=st.session_state["product_info"],
type_of_shoot=st.session_state["shoot_type"],
product_name=st.session_state["product_description"],
model_details=pre_filled_model_details,
location_details=pre_filled_background_details,
theme_details=str(selected_theme_text_by_user),
chat_history=str(st.session_state["mood_chat_messages"])
)
prompt_for_flux_mood_board = create_chat_completion_request_open_ai_for_summary(
final_mood_board_image_prompt, "No", system_message=prompts["SYSTEM_PROMPT_FOR_MOOD_BOARD"])
if seed == "Fixed":
generated_flux_image = flux_generated_image_seed(prompt_for_flux_mood_board, seed_number, dimensions)
else:
generated_flux_image = flux_generated_image(prompt_for_flux_mood_board)
st.session_state["mood_chat_messages"].append({
"role": "AI",
"message": prompt_for_flux_mood_board,
"image": generated_flux_image["file_name"]
})
# for message in st.session_state["mood_chat_messages"]:
# if message["role"] == "AI":
# st.write(f"Caimera AI: {message['message']}")
# st.image(message['image'])
#else:
# st.write(f"**You**: {message['message']}")
user_input = st.chat_input("Type your message here...")
if user_input:
st.session_state["mood_chat_messages"].append({"role": "User", "message": user_input})
prompt_for_flux_mood_board_n = create_chat_completion_request_open_ai_for_summary(
user_input, "No", system_message=prompts["SYSTEM_PROMPT_FOR_MOOD_BOARD"])
if seed == "Fixed":
generated_flux_image_n = flux_generated_image_seed(prompt_for_flux_mood_board_n, seed_number,
dimensions)
else:
generated_flux_image_n = flux_generated_image(prompt_for_flux_mood_board_n)
st.session_state["mood_chat_messages"].append({
"role": "AI",
"message": prompt_for_flux_mood_board_n,
"image": generated_flux_image_n["file_name"]
})
for message in st.session_state["mood_chat_messages"]:
if message["role"] == "AI":
st.write(f"**AI**: {message['message']}")
st.image(message['image'])
else:
st.write(f"**You**: {message['message']}")
print(seed_number)
if 'page' not in st.session_state:
st.session_state.page = "Page 1"
# Routing between pages
if st.session_state.page == "Page 1":
page1()
elif st.session_state.page == "Page 2":
page2()
elif st.session_state.page == "Page 3":
page3()
elif st.session_state.page == "Page 4":
page4()
|