File size: 24,582 Bytes
87fcfdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import streamlit as st
import os
from prompts import prompts
from constants import JSON_SCHEMA_FOR_GPT, UPDATED_MODEL_ONLY_SCHEMA, JSON_SCHEMA_FOR_LOC_ONLY
from gpt import runAssistant, checkRunStatus, retrieveThread, createAssistant, saveFileOpenAI, startAssistantThread, \
    create_chat_completion_request_open_ai_for_summary, addMessageToThread, create_image_completion_request_gpt
from summarizer import create_brand_html, create_langchain_openai_query
from theme import flux_generated_image, flux_generated_image_seed
import time
from PIL import Image
import io


def process_run(st, thread_id, assistant_id):
    run_id = runAssistant(thread_id, assistant_id)
    status = 'running'
    while status != 'completed':
        with st.spinner('. . .'):
            time.sleep(20)
            status = checkRunStatus(thread_id, run_id)
    thread_messages = retrieveThread(thread_id)
    for message in thread_messages:
        if not message['role'] == 'user':
            return message["content"]
        else:
            pass


def page1():
    st.title("Upload Product")
    st.markdown("<h2 style='color:#FF5733; font-weight:bold;'>Add a Product</h2>", unsafe_allow_html=True)
    st.markdown("<p style='color:#444;'>Upload your product images, more images you upload better the AI learns</p>",
                unsafe_allow_html=True)
    uploaded_files = st.file_uploader("Upload Images", accept_multiple_files=True, key="uploaded_files_key")
    product_description = st.text_area("Describe the product", value=st.session_state.get("product_description", ""))
    col1, col2 = st.columns([1, 2])
    with col1:
        if st.button("Save"):
            st.session_state['uploaded_files'] = uploaded_files
            st.session_state['product_description'] = product_description
            st.success("Product information saved!")
    with col2:
        if st.button("Add product and move to next page"):
            if not uploaded_files:
                st.warning("Please upload at least one image.")
            elif not product_description:
                st.warning("Please provide a description for the product.")
            else:
                st.session_state['uploaded_files'] = uploaded_files
                st.session_state['product_description'] = product_description
                st.session_state['page'] = "Page 2"


def page2():
    st.title("Tell us about your shoot preference")
    st.markdown("<h3 style='color:#444;'>What are you shooting today?</h3>", unsafe_allow_html=True)
    shoot_type = st.radio("Select your shoot type:", ["Editorial", "Catalogue"], index=0)
    st.session_state['shoot_type'] = shoot_type
    brand_link = st.text_input("Add your brand link:", value=st.session_state.get("brand_link", ""))
    st.session_state['brand_link'] = brand_link
    if st.button("Get Brand Summary"):
        if brand_link:
            brand_summary_html = create_brand_html(brand_link)
            brand_summary = create_langchain_openai_query(brand_summary_html)
            st.session_state['brand_summary'] = brand_summary
            st.success("Brand summary fetched!")
        else:
            st.warning("Please add a brand link.")
    brand_summary_value = st.session_state.get('brand_summary', "")
    editable_summary = st.text_area("Brand Summary:", value=brand_summary_value, height=100)
    st.session_state['brand_summary'] = editable_summary
    product_info = st.text_area("Tell us something about your product:", value=st.session_state.get("product_info", ""))
    st.session_state['product_info'] = product_info
    reference_images = st.file_uploader("Upload Reference Images", accept_multiple_files=True,
                                        key="reference_images_key")
    st.session_state['reference_images'] = reference_images
    if st.button("Give Me Ideas"):
        st.session_state['page'] = "Page 3"


def page3():
    st.title("Scene Suggestions")
    st.write("Based on your uploaded product and references!")
    feedback = st.chat_input("Provide feedback:")
    if not st.session_state.get("assistant_initialized", False):
        assistant_id = createAssistant("You are a helpful assistant who is an expert in Fashion Shoots.")
        updated_prompt = prompts["IDEA_GENERATION_PROMPT"].format(
            brand_details=st.session_state["brand_summary"],
            product_details=st.session_state["product_info"],
            type_of_shoot=st.session_state["shoot_type"],
            json_schema=JSON_SCHEMA_FOR_GPT,
            product_name=st.session_state["product_description"]
        )
        file_locations = []
        for uploaded_file in st.session_state['uploaded_files']:
            bytes_data = uploaded_file.getvalue()
            image = Image.open(io.BytesIO(bytes_data))
            image.verify()
            location = f"temp_image_{uploaded_file.name}"
            with open(location, "wb") as f:
                f.write(bytes_data)
            file_locations.append(location)
            image.close()
        for uploaded_file in st.session_state['reference_images']:
            bytes_data = uploaded_file.getvalue()
            image = Image.open(io.BytesIO(bytes_data))
            image.verify()
            location = f"temp2_image_{uploaded_file.name}"
            with open(location, "wb") as f:
                f.write(bytes_data)
            file_locations.append(location)
            image.close()
        file_ids = [saveFileOpenAI(location) for location in file_locations]
        thread_id = startAssistantThread(file_ids, updated_prompt, "yes", "yes")
        st.session_state.assistant_id = assistant_id
        st.session_state.thread_id = thread_id
        st.session_state.assistant_initialized = True
        regenerate_images(thread_id, assistant_id)
    if feedback:
        if 'images' in st.session_state and 'descriptions' in st.session_state:
            for image_path in st.session_state['images']:
                os.remove(image_path)
            del st.session_state['images']
            del st.session_state['descriptions']
            del st.session_state["json_descriptions"]
        addMessageToThread(st.session_state.thread_id, feedback)
        regenerate_images(st.session_state.thread_id, st.session_state.assistant_id)
    selected_image_index = None
    cols = st.columns(1)
    for i in range(len(st.session_state["images"])):
        with cols[i]:
            st.image(st.session_state.images[i], caption=st.session_state.descriptions[i], use_column_width=True)
            if st.radio(f"Select {i + 1}", [f"Select Image {i + 1}"], key=f"radio_{i}"):
                selected_image_index = i
    if selected_image_index is not None and st.button("Refine"):
        st.session_state.selected_image_index = selected_image_index
        st.session_state.selected_image = st.session_state.images[selected_image_index]
        st.session_state.selected_text = st.session_state.descriptions[selected_image_index]
        st.session_state['page'] = "Page 4"
    if st.button("Go Back!"):
        st.session_state.page = "Page 2"


def regenerate_images(thread_id, assistant_id):
    """Helper function to generate images and descriptions."""
    response_from_process_list = []
    for _ in range(1):  # Assuming you generate 1 set of image/description
        response_from_process = process_run(st, thread_id, assistant_id)
        response_from_process_list.append(response_from_process)

    summary_list = []
    for final_response in response_from_process_list:
        prompt_for_idea_summary = prompts["IDEA_SUMMARY_PROMPT"].format(
            json_schema=str(final_response)
        )
        summary = create_chat_completion_request_open_ai_for_summary(prompt_for_idea_summary, "No")
        summary_list.append(summary)

    # Generate images based on the summaries
    flux_generated_theme_image = []
    for summary in summary_list:
        theme_image = flux_generated_image(summary)
        flux_generated_theme_image.append(theme_image["file_name"])

    # Save the new images and descriptions in session state
    st.session_state["images"] = flux_generated_theme_image
    st.session_state["descriptions"] = summary_list
    st.session_state["json_descriptions"] = response_from_process_list


def page4():
    import json
    selected_theme_text_by_user = st.session_state.json_descriptions[st.session_state.selected_image_index]
    print(selected_theme_text_by_user)
    schema_for_model_bg = {"type": "object",
                           "properties": {
                               "Model": {
                                   "type": "string",
                                   "description": "The model name or identifier."
                               },
                               "Background": {
                                   "type": "string",
                                   "description": "Description or type of the background."
                               }},
                           "required": ["Model", "Background"],
                           "additionalProperties": False
                           }
    prompt_to_get_details = (f"You are provided with a brief of a Fashion Shoot : "
                             f"{st.session_state[\"json_descriptions\"]}.\n Now provide me a JSON which will"
                             f"have two keys ```Model``` and ```Background```. Provide all detail's"
                             f"present about model and background in the brief provided by you. Just provide a "
                             f"natural langauge description. I will use it as description of model and "
                             f"background needed by the brand Output JSON following the schema")
    response_from_open_ai = create_chat_completion_request_open_ai_for_summary(prompt_to_get_details,
                                                                               schema_name="model_bg",
                                                                               json_schema=schema_for_model_bg,
                                                                               json_mode="yes")
    json_response_from_open_ai = json.loads(response_from_open_ai)
    with (st.sidebar):
        st.title(st.session_state["product_info"])
        st.write("Product Image")
        st.image(st.session_state['uploaded_files'])
        st.text("Scene Suggestion:")
        st.image(st.session_state.selected_image)
        dimensions = st.text_input("Enter Dimensions e.g 3:4, 1:2", key="Dimensions")
        seed = st.selectbox(
            "Seed Preference",
            ("Fixed", "Random"),
        )
        if seed == "Fixed":
            seed_number = st.number_input("Enter an integer:", min_value=1, max_value=100000, value=10, step=1)
        else:
            seed_number = 0
            st.text("Thanks will take care")
        model_preference = st.selectbox(
            "Model Preference",
            ("Create Own/Edit Pre-filled", "Ideas", "Upload Reference"),
        )
        if model_preference == "Create Own/Edit Pre-filled":
            pre_filled_model_details = st.text_area("Model Idea", value=json_response_from_open_ai["Model"],
                                                    key="Model Idea")
        elif model_preference == "Ideas":
            prompt_to_generate_idea = ("Your task is to create model ideas for shoot of a  product of a brand. "
                                       "The details about the brand: ```{brand_details}.\n The product: {product_name},"
                                       "which is: ```{product_details}```.\n Reference images for the product and "
                                       "brands shoot idea is already provided with you. Additionally brand wants to "
                                       "have a ```{type_of_shoot}``` of the model. Now based on all provided details, "
                                       "think step by step and provide your ideas about what type of model the brand"
                                       "should need based on mentioned JSON format. Also provide a combined prompt "
                                       "which the brand will use to create a shoot image. While creating the "
                                       "combined prompt as mentioned in the JSON schema, do not miss any details you"
                                       " mentioned in the JSON.")
            updated_model_idea_gen_prompt = prompt_to_generate_idea.format(
                brand_details=st.session_state["brand_summary"],
                product_details=st.session_state["product_info"],
                type_of_shoot=st.session_state["shoot_type"],
                product_name=st.session_state["product_description"]

            )
            response_for_only_model = create_chat_completion_request_open_ai_for_summary(updated_model_idea_gen_prompt
                                                                                         , schema_name="model_only",
                                                                                         json_schema=
                                                                                         UPDATED_MODEL_ONLY_SCHEMA,
                                                                                         json_mode="yes")
            pre_filled_model_details = st.text_area("Model Idea", value=response_for_only_model,
                                                    key="Model Idea")
        else:
            uploaded_files = st.file_uploader("Upload one Model Reference Image here",
                                              accept_multiple_files=False, key="uploader")
            bytes_data = uploaded_files.getvalue()
            image = Image.open(io.BytesIO(bytes_data))
            image.verify()
            location = f"temp_image_{uploaded_files.name}"
            with open(location, "wb") as f:
                f.write(bytes_data)
            image.close()
            prompt_to_generate_idea = ("Follow this JSON Schema : {json_schema_model_only}."
                                       "Your task is to create model ideas for shoot of a  product of a brand. "
                                       "The details about the brand: ```{brand_details}.\n The product: {product_name},"
                                       "which is: ```{product_details}```.\n Reference images for the product and "
                                       "brands shoot idea is already provided with you. Additionally brand wants to "
                                       "have a ```{type_of_shoot}``` of the model. Now based on all provided details, "
                                       "think step by step and provide your ideas about what type of model the brand"
                                       "should need based on mentioned JSON format. Also provide a combined prompt "
                                       "which the brand will use to create a shoot image. While creating the "
                                       "combined prompt as mentioned in the JSON schema, do not miss any details you"
                                       " mentioned in the JSON.")
            updated_model_idea_gen_prompt = prompt_to_generate_idea.format(
                json_schema_model_only=UPDATED_MODEL_ONLY_SCHEMA,
                brand_details=st.session_state["brand_summary"],
                product_details=st.session_state["product_info"],
                type_of_shoot=st.session_state["shoot_type"],
                product_name=st.session_state["product_description"]

            )
            json_response = create_image_completion_request_gpt(location, updated_model_idea_gen_prompt)
            pre_filled_model_details = st.text_area("Model Idea", value=json_response,
                                                    key="Model Idea")
        background_preference = st.selectbox(
            "Background Preference",
            ("Create Own/Edit Pre-filled", "Ideas", "Upload Reference"),
        )
        if background_preference == "Create Own/Edit Pre-filled":
            pre_filled_background_details = st.text_area("Background Idea",
                                                         value=json_response_from_open_ai["Background"],
                                                         key="Background Idea")
        elif background_preference == "Ideas":
            prompt_to_generate_idea = ("Follow this JSON Schema : {json_schema_background_only}."
                                       "Your task is to create location/background ideas for shoot of a  "
                                       "product of a brand. "
                                       "The details about the brand: ```{brand_details}.\n The product: {product_name},"
                                       "which is: ```{product_details}```.\n Reference images for the product and "
                                       "brands shoot idea is already provided with you. Additionally brand wants to "
                                       "have a ```{type_of_shoot}``` of the model. Now based on all provided details, "
                                       "think step by step and provide your ideas about what type of location the brand"
                                       "should need based on mentioned JSON format. Also provide a combined prompt "
                                       "which the brand will use to create a shoot image. While creating the "
                                       "combined prompt as mentioned in the JSON schema, do not miss any details you"
                                       " mentioned in the JSON.")
            updated_bg_idea_gen_prompt = prompt_to_generate_idea.format(
                json_schema_background_only=JSON_SCHEMA_FOR_LOC_ONLY,
                brand_details=st.session_state["brand_summary"],
                product_details=st.session_state["product_info"],
                type_of_shoot=st.session_state["shoot_type"],
                product_name=st.session_state["product_description"]

            )
            response_for_only_bg = create_chat_completion_request_open_ai_for_summary(updated_bg_idea_gen_prompt,
                                                                                      schema_name="bg_o",
                                                                                      json_schema=JSON_SCHEMA_FOR_LOC_ONLY,
                                                                                      json_mode="yes")
            pre_filled_background_details = st.text_area("Background Idea", value=response_for_only_bg,
                                                         key="Background Idea")
        else:
            uploaded_files = st.file_uploader("Upload one Background Reference Image here",
                                              accept_multiple_files=False, key="uploader")
            bytes_data = uploaded_files.getvalue()
            image = Image.open(io.BytesIO(bytes_data))
            image.verify()
            location = f"temp2_image_{uploaded_files.name}"
            with open(location, "wb") as f:
                f.write(bytes_data)
            image.close()
            prompt_to_generate_idea = ("Follow this JSON Schema : {json_schema_bg_only}."
                                       "Your task is to create Background/Location ideas for shoot of a  "
                                       "product of a brand. "
                                       "The details about the brand: ```{brand_details}.\n The product: {product_name},"
                                       "which is: ```{product_details}```.\n Reference images for the product and "
                                       "brands shoot idea is already provided with you. Additionally brand wants to "
                                       "have a ```{type_of_shoot}``` of the model. Now based on all provided details, "
                                       "think step by step and provide your ideas about what type of location the brand"
                                       "should need based on mentioned JSON format. Also provide a combined prompt "
                                       "which the brand will use to create a shoot image. While creating the "
                                       "combined prompt as mentioned in the JSON schema, do not miss any details you"
                                       " mentioned in the JSON.")
            updated_bg_idea_gen_prompt = prompt_to_generate_idea.format(
                json_schema_bg_only=JSON_SCHEMA_FOR_LOC_ONLY,
                brand_details=st.session_state["brand_summary"],
                product_details=st.session_state["product_info"],
                type_of_shoot=st.session_state["shoot_type"],
                product_name=st.session_state["product_description"]

            )
            json_response = create_image_completion_request_gpt(location, updated_bg_idea_gen_prompt)
            pre_filled_background_details = st.text_area("Background Idea", value=json_response,
                                                         key="Background Idea")
        start_chat = st.button("Start Chat")
    if "mood_chat_messages" not in st.session_state:
        st.session_state["mood_chat_messages"] = []
    if seed and dimensions and model_preference and background_preference:
        if start_chat:
            final_mood_board_image_prompt = prompts["FINAL_PROMPT_GENERATION"].format(
                brand_details=st.session_state["brand_summary"],
                product_details=st.session_state["product_info"],
                type_of_shoot=st.session_state["shoot_type"],
                product_name=st.session_state["product_description"],
                model_details=pre_filled_model_details,
                location_details=pre_filled_background_details,
                theme_details=str(selected_theme_text_by_user),
                chat_history=str(st.session_state["mood_chat_messages"])
            )
            prompt_for_flux_mood_board = create_chat_completion_request_open_ai_for_summary(
                final_mood_board_image_prompt, "No", system_message=prompts["SYSTEM_PROMPT_FOR_MOOD_BOARD"])
            if seed == "Fixed":
                generated_flux_image = flux_generated_image_seed(prompt_for_flux_mood_board, seed_number, dimensions)
            else:
                generated_flux_image = flux_generated_image(prompt_for_flux_mood_board)
            st.session_state["mood_chat_messages"].append({
                "role": "AI",
                "message": prompt_for_flux_mood_board,
                "image": generated_flux_image["file_name"]
            })
        # for message in st.session_state["mood_chat_messages"]:
          #  if message["role"] == "AI":
           #     st.write(f"Caimera AI: {message['message']}")
            #    st.image(message['image'])
            #else:
             #   st.write(f"**You**: {message['message']}")
        user_input = st.chat_input("Type your message here...")
        if user_input:
            st.session_state["mood_chat_messages"].append({"role": "User", "message": user_input})
            prompt_for_flux_mood_board_n = create_chat_completion_request_open_ai_for_summary(
                user_input, "No", system_message=prompts["SYSTEM_PROMPT_FOR_MOOD_BOARD"])
            if seed == "Fixed":
                generated_flux_image_n = flux_generated_image_seed(prompt_for_flux_mood_board_n, seed_number,
                                                                   dimensions)
            else:
                generated_flux_image_n = flux_generated_image(prompt_for_flux_mood_board_n)
            st.session_state["mood_chat_messages"].append({
                "role": "AI",
                "message": prompt_for_flux_mood_board_n,
                "image": generated_flux_image_n["file_name"]
            })
        for message in st.session_state["mood_chat_messages"]:
            if message["role"] == "AI":
                st.write(f"**AI**: {message['message']}")
                st.image(message['image'])
            else:
                st.write(f"**You**: {message['message']}")
        print(seed_number)


if 'page' not in st.session_state:
    st.session_state.page = "Page 1"

# Routing between pages
if st.session_state.page == "Page 1":
    page1()
elif st.session_state.page == "Page 2":
    page2()
elif st.session_state.page == "Page 3":
    page3()
elif st.session_state.page == "Page 4":
    page4()