|
import gradio as gr |
|
from transformers import pipeline |
|
import os |
|
import numpy as np |
|
import torch |
|
|
|
|
|
print("Loading model...") |
|
model_id = "badrex/mms-300m-arabic-dialect-identifier" |
|
classifier = pipeline("audio-classification", model=model_id) |
|
print("Model loaded successfully") |
|
|
|
|
|
dialect_mapping = { |
|
"MSA": "Modern Standard Arabic", |
|
"Egyptian": "Egyptian Arabic", |
|
"Gulf": "Gulf Arabic", |
|
"Levantine": "Levantine Arabic", |
|
"Maghrebi": "Maghrebi Arabic" |
|
} |
|
|
|
def predict_dialect(audio): |
|
if audio is None: |
|
return {"Error": 1.0} |
|
|
|
|
|
sr, audio_array = audio |
|
|
|
|
|
if len(audio_array.shape) > 1: |
|
audio_array = audio_array.mean(axis=1) |
|
|
|
|
|
if audio_array.dtype != np.float32: |
|
|
|
if audio_array.dtype == np.int16: |
|
audio_array = audio_array.astype(np.float32) / 32768.0 |
|
else: |
|
audio_array = audio_array.astype(np.float32) |
|
|
|
print(f"Processing audio: sample rate={sr}, shape={audio_array.shape}") |
|
|
|
|
|
predictions = classifier({"sampling_rate": sr, "raw": audio_array}) |
|
|
|
|
|
results = {} |
|
for pred in predictions: |
|
dialect_name = dialect_mapping.get(pred['label'], pred['label']) |
|
results[dialect_name] = float(pred['score']) |
|
|
|
return results |
|
|
|
|
|
examples = [] |
|
examples_dir = "examples" |
|
if os.path.exists(examples_dir): |
|
for filename in os.listdir(examples_dir): |
|
if filename.endswith((".wav", ".mp3", ".ogg")): |
|
examples.append([os.path.join(examples_dir, filename)]) |
|
|
|
print(f"Found {len(examples)} example files") |
|
else: |
|
print("Examples directory not found") |
|
|
|
|
|
|
|
|
|
custom_css = """ |
|
<style> |
|
.centered-content { |
|
text-align: center; |
|
max-width: 800px; |
|
margin: 0 auto; |
|
padding: 20px; |
|
} |
|
|
|
.logo-image { |
|
width: 200px; |
|
height: auto; |
|
margin: 20px auto; |
|
display: block; |
|
} |
|
|
|
.description-text { |
|
font-size: 16px; |
|
line-height: 1.6; |
|
margin-bottom: 20px; |
|
} |
|
|
|
.dialect-list { |
|
font-size: 15px; |
|
line-height: 1.8; |
|
text-align: left; |
|
max-width: 600px; |
|
margin: 0 auto; |
|
} |
|
|
|
.highlight-text { |
|
font-size: 16px; |
|
color: #2563eb; |
|
margin: 20px 0; |
|
} |
|
|
|
.footer-text { |
|
font-size: 13px; |
|
color: #6b7280; |
|
margin-top: 20px; |
|
} |
|
</style> |
|
""" |
|
|
|
""" |
|
<p style="font-size: 15px; line-height: 1.8;"> |
|
<strong>The following Arabic language varieties are supported:</strong> |
|
<br><br> |
|
✦ <strong>Modern Standard Arabic (MSA)</strong> - The formal language of media and education |
|
<br> |
|
✦ <strong>Egyptian Arabic</strong> - The dialect of Cairo, Alexandria, and popular Arabic cinema |
|
<br> |
|
✦ <strong>Gulf Arabic</strong> - Spoken across Saudi Arabia, UAE, Kuwait, Qatar, Bahrain, and Oman |
|
<br> |
|
✦ <strong>Levantine Arabic</strong> - The dialect of Syria, Lebanon, Jordan, and Palestine |
|
<br> |
|
✦ <strong>Maghrebi Arabic</strong> - The distinctive varieties of Morocco, Algeria, Tunisia, and Libya |
|
</p> |
|
<br> |
|
""" |
|
|
|
|
|
demo = gr.Interface( |
|
fn=predict_dialect, |
|
inputs=gr.Audio(), |
|
outputs=gr.Label(num_top_classes=5, label="Predicted Dialect"), |
|
title="Tamyïz 🍉 Arabic Dialect Identification in Speech", |
|
description=""" |
|
<div class="centered-content"> |
|
<div> |
|
<p> |
|
By <a href="https://badrex.github.io/" style="color: #2563eb;">Badr Alabsi</a> with ❤️🤍💚 |
|
</p> |
|
<br> |
|
<p style="font-size: 15px; line-height: 1.8;"> |
|
This is a demo for the accurate and robust Transformer-based <a href="https://huggingface.co/badrex/mms-300m-arabic-dialect-identifier" style="color: #FF5349;">model</a> for Spoken Arabic Dialect Identification (ADI). |
|
From just a short audio clip (5-10 seconds), the model can identify Modern Standard Arabic (<strong>MSA</strong>) as well as four major regional Arabic varieties: <strong>Egyptian</strong> Arabic, <strong>Gulf</strong> Arabic, <strong>Levantine</strong> Arabic, and <strong>Maghrebi</strong> Arabic. |
|
<br> |
|
<p style="font-size: 15px; line-height: 1.8;"> |
|
Simply <strong>upload an audio file</strong> 📀 or <strong>record yourself speaking</strong> ⏯️⏺️ to try out the model! |
|
</p> |
|
</div> |
|
</div> |
|
""", |
|
examples=examples if examples else None, |
|
cache_examples=False, |
|
flagging_mode=None |
|
) |
|
|
|
|
|
demo.launch(share=True) |