badrex's picture
Update app.py
1496981 verified
import gradio as gr
from transformers import pipeline
import os
import numpy as np
import torch
# Load the model
print("Loading model...")
model_id = "badrex/mms-300m-arabic-dialect-identifier"
classifier = pipeline("audio-classification", model=model_id)
print("Model loaded successfully")
# Define dialect mapping
dialect_mapping = {
"MSA": "Modern Standard Arabic",
"Egyptian": "Egyptian Arabic",
"Gulf": "Gulf Arabic",
"Levantine": "Levantine Arabic",
"Maghrebi": "Maghrebi Arabic"
}
def predict_dialect(audio):
if audio is None:
return {"Error": 1.0}
# The audio input from Gradio is a tuple of (sample_rate, audio_array)
sr, audio_array = audio
# Process the audio input
if len(audio_array.shape) > 1:
audio_array = audio_array.mean(axis=1) # Convert stereo to mono
# Convert audio to float32 if it's not already (fix for Chrome recording issue)
if audio_array.dtype != np.float32:
# Normalize to [-1, 1] range as expected by the model
if audio_array.dtype == np.int16:
audio_array = audio_array.astype(np.float32) / 32768.0
else:
audio_array = audio_array.astype(np.float32)
print(f"Processing audio: sample rate={sr}, shape={audio_array.shape}")
# Classify the dialect
predictions = classifier({"sampling_rate": sr, "raw": audio_array})
# Format results for display
results = {}
for pred in predictions:
dialect_name = dialect_mapping.get(pred['label'], pred['label'])
results[dialect_name] = float(pred['score'])
return results
# Manually prepare example file paths without metadata
examples = []
examples_dir = "examples"
if os.path.exists(examples_dir):
for filename in os.listdir(examples_dir):
if filename.endswith((".wav", ".mp3", ".ogg")):
examples.append([os.path.join(examples_dir, filename)])
print(f"Found {len(examples)} example files")
else:
print("Examples directory not found")
# Custom CSS for better styling
custom_css = """
<style>
.centered-content {
text-align: center;
max-width: 800px;
margin: 0 auto;
padding: 20px;
}
.logo-image {
width: 200px;
height: auto;
margin: 20px auto;
display: block;
}
.description-text {
font-size: 16px;
line-height: 1.6;
margin-bottom: 20px;
}
.dialect-list {
font-size: 15px;
line-height: 1.8;
text-align: left;
max-width: 600px;
margin: 0 auto;
}
.highlight-text {
font-size: 16px;
color: #2563eb;
margin: 20px 0;
}
.footer-text {
font-size: 13px;
color: #6b7280;
margin-top: 20px;
}
</style>
"""
"""
<p style="font-size: 15px; line-height: 1.8;">
<strong>The following Arabic language varieties are supported:</strong>
<br><br>
✦ <strong>Modern Standard Arabic (MSA)</strong> - The formal language of media and education
<br>
✦ <strong>Egyptian Arabic</strong> - The dialect of Cairo, Alexandria, and popular Arabic cinema
<br>
✦ <strong>Gulf Arabic</strong> - Spoken across Saudi Arabia, UAE, Kuwait, Qatar, Bahrain, and Oman
<br>
✦ <strong>Levantine Arabic</strong> - The dialect of Syria, Lebanon, Jordan, and Palestine
<br>
✦ <strong>Maghrebi Arabic</strong> - The distinctive varieties of Morocco, Algeria, Tunisia, and Libya
</p>
<br>
"""
# Create the Gradio interface
demo = gr.Interface(
fn=predict_dialect,
inputs=gr.Audio(),
outputs=gr.Label(num_top_classes=5, label="Predicted Dialect"),
title="Tamyïz 🍉 Arabic Dialect Identification in Speech",
description="""
<div class="centered-content">
<div>
<p>
By <a href="https://badrex.github.io/" style="color: #2563eb;">Badr Alabsi</a> with ❤️🤍💚
</p>
<br>
<p style="font-size: 15px; line-height: 1.8;">
This is a demo for the accurate and robust Transformer-based <a href="https://huggingface.co/badrex/mms-300m-arabic-dialect-identifier" style="color: #FF5349;">model</a> for Spoken Arabic Dialect Identification (ADI).
From just a short audio clip (5-10 seconds), the model can identify Modern Standard Arabic (<strong>MSA</strong>) as well as four major regional Arabic varieties: <strong>Egyptian</strong> Arabic, <strong>Gulf</strong> Arabic, <strong>Levantine</strong> Arabic, and <strong>Maghrebi</strong> Arabic.
<br>
<p style="font-size: 15px; line-height: 1.8;">
Simply <strong>upload an audio file</strong> 📀 or <strong>record yourself speaking</strong> ⏯️⏺️ to try out the model!
</p>
</div>
</div>
""",
examples=examples if examples else None,
cache_examples=False, # Disable caching to avoid issues
flagging_mode=None
)
# Launch the app
demo.launch(share=True)