Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient
|
3 |
+
import os
|
4 |
+
|
5 |
+
# Get the API token from environment variables
|
6 |
+
api_token = os.getenv("HUGGINGFACE_API_TOKEN")
|
7 |
+
|
8 |
+
# Initialize the Inference Client for your model
|
9 |
+
client = InferenceClient(
|
10 |
+
model="SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net",
|
11 |
+
token=api_token
|
12 |
+
)
|
13 |
+
|
14 |
+
def predict(image):
|
15 |
+
"""
|
16 |
+
Process the uploaded image and return the segmentation result.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
image: PIL Image object from Gradio input
|
20 |
+
|
21 |
+
Returns:
|
22 |
+
The segmentation result (assumed to be an image) or an error message
|
23 |
+
"""
|
24 |
+
try:
|
25 |
+
# TODO: Add any necessary preprocessing here (e.g., resizing, normalization)
|
26 |
+
# Send the image to the model via the Inference API
|
27 |
+
result = client.post(data={"inputs": image})
|
28 |
+
# TODO: Add any necessary postprocessing here (e.g., converting to image, overlaying on original)
|
29 |
+
# For now, assuming the result is directly the segmentation image
|
30 |
+
return result
|
31 |
+
except Exception as e:
|
32 |
+
return f"Error: {str(e)}"
|
33 |
+
|
34 |
+
# Create the Gradio interface
|
35 |
+
iface = gr.Interface(
|
36 |
+
fn=predict,
|
37 |
+
inputs=gr.Image(type="pil", label="Upload Panoramic X-ray Image"),
|
38 |
+
outputs=gr.Image(type="pil", label="Segmentation Result"),
|
39 |
+
title="Teeth Segmentation in Panoramic X-rays",
|
40 |
+
description="Upload an X-ray image to see the segmented teeth."
|
41 |
+
)
|
42 |
+
|
43 |
+
# Launch the interface
|
44 |
+
iface.launch()
|