Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,24 @@
|
|
1 |
import os
|
2 |
import json
|
3 |
-
import re
|
4 |
from huggingface_hub import InferenceClient
|
5 |
import gradio as gr
|
6 |
from pydantic import BaseModel, Field
|
7 |
-
from typing import Optional, Literal
|
8 |
from huggingface_hub.errors import HfHubHTTPError
|
9 |
|
10 |
class PromptInput(BaseModel):
|
11 |
text: str = Field(..., description="The initial prompt text")
|
12 |
-
meta_prompt_choice: Literal["star","done","physics","morphosis", "verse", "phor","bolism","math","arpe"] = Field(..., description="Choice of meta prompt strategy")
|
13 |
|
14 |
-
class
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
explanation_of_refinements: Optional[str] = None
|
19 |
-
raw_content: Optional[str] = None
|
20 |
|
21 |
class PromptRefiner:
|
22 |
def __init__(self, api_token: str):
|
23 |
self.client = InferenceClient(token=api_token, timeout=300)
|
24 |
-
self.meta_prompts = {
|
25 |
"morphosis": original_meta_prompt,
|
26 |
"verse": new_meta_prompt,
|
27 |
"physics": metaprompt1,
|
@@ -34,19 +31,23 @@ class PromptRefiner:
|
|
34 |
|
35 |
def refine_prompt(self, prompt_input: PromptInput) -> tuple:
|
36 |
try:
|
37 |
-
# Select meta prompt using dictionary instead of if-elif chain
|
38 |
selected_meta_prompt = self.meta_prompts.get(
|
39 |
-
prompt_input.meta_prompt_choice,
|
40 |
advanced_meta_prompt
|
41 |
)
|
42 |
-
|
43 |
messages = [
|
44 |
{
|
45 |
-
"role": "system",
|
46 |
-
"content": 'You are an expert at refining
|
|
|
|
|
|
|
|
|
|
|
47 |
},
|
48 |
{
|
49 |
-
"role": "user",
|
50 |
"content": selected_meta_prompt.replace("[Insert initial prompt here]", prompt_input.text)
|
51 |
}
|
52 |
]
|
@@ -55,101 +56,81 @@ class PromptRefiner:
|
|
55 |
model=prompt_refiner_model,
|
56 |
messages=messages,
|
57 |
max_tokens=2000,
|
58 |
-
temperature=0.8
|
|
|
59 |
)
|
60 |
-
|
|
|
61 |
response_content = response.choices[0].message.content.strip()
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
return (
|
67 |
-
result
|
68 |
-
result
|
69 |
-
result
|
70 |
result
|
71 |
)
|
72 |
|
73 |
except HfHubHTTPError as e:
|
|
|
|
|
|
|
|
|
|
|
74 |
return (
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
)
|
80 |
except Exception as e:
|
|
|
|
|
|
|
|
|
|
|
81 |
return (
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
)
|
87 |
|
88 |
-
def _parse_response(self, response_content: str) -> dict:
|
89 |
-
try:
|
90 |
-
# Try to find JSON in response
|
91 |
-
json_match = re.search(r'<json>\s*(.*?)\s*</json>', response_content, re.DOTALL)
|
92 |
-
if json_match:
|
93 |
-
json_str = json_match.group(1)
|
94 |
-
json_str = re.sub(r'\n\s*', ' ', json_str)
|
95 |
-
json_str = json_str.replace('"', '\\"')
|
96 |
-
json_output = json.loads(f'"{json_str}"')
|
97 |
-
|
98 |
-
if isinstance(json_output, str):
|
99 |
-
json_output = json.loads(json_output)
|
100 |
-
output={
|
101 |
-
key: value.replace('\\"', '"') if isinstance(value, str) else value
|
102 |
-
for key, value in json_output.items()
|
103 |
-
}
|
104 |
-
output['response_content']=json_output
|
105 |
-
# Clean up JSON values
|
106 |
-
return output
|
107 |
-
|
108 |
-
# Fallback to regex parsing if no JSON found
|
109 |
-
output = {}
|
110 |
-
for key in ["initial_prompt_evaluation", "refined_prompt", "explanation_of_refinements"]:
|
111 |
-
pattern = rf'"{key}":\s*"(.*?)"(?:,|\}})'
|
112 |
-
match = re.search(pattern, response_content, re.DOTALL)
|
113 |
-
output[key] = match.group(1).replace('\\n', '\n').replace('\\"', '"') if match else ""
|
114 |
-
output['response_content']=response_content
|
115 |
-
return output
|
116 |
-
|
117 |
-
except (json.JSONDecodeError, ValueError) as e:
|
118 |
-
print(f"Error parsing response: {e}")
|
119 |
-
print(f"Raw content: {response_content}")
|
120 |
-
return {
|
121 |
-
"initial_prompt_evaluation": "Error parsing response",
|
122 |
-
"refined_prompt": "",
|
123 |
-
"explanation_of_refinements": str(e),
|
124 |
-
'response_content':str(e)
|
125 |
-
}
|
126 |
-
|
127 |
def apply_prompt(self, prompt: str, model: str) -> str:
|
128 |
try:
|
129 |
messages = [
|
130 |
{
|
131 |
"role": "system",
|
132 |
-
"content": "You are a helpful assistant. Answer in stylized version with latex format or markdown if relevant. Separate your answer into logical sections using level 2 headers (##) for sections and bolding (**) for subsections.
|
133 |
},
|
134 |
{
|
135 |
"role": "user",
|
136 |
"content": prompt
|
137 |
}
|
138 |
]
|
139 |
-
|
140 |
response = self.client.chat_completion(
|
141 |
model=model,
|
142 |
messages=messages,
|
143 |
max_tokens=2000,
|
144 |
temperature=0.8
|
145 |
)
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
except Exception as e:
|
151 |
return f"Error: {str(e)}"
|
152 |
|
|
|
153 |
class GradioInterface:
|
154 |
def __init__(self, prompt_refiner: PromptRefiner):
|
155 |
self.prompt_refiner = prompt_refiner
|
|
|
1 |
import os
|
2 |
import json
|
|
|
3 |
from huggingface_hub import InferenceClient
|
4 |
import gradio as gr
|
5 |
from pydantic import BaseModel, Field
|
6 |
+
from typing import Optional, Literal, Dict
|
7 |
from huggingface_hub.errors import HfHubHTTPError
|
8 |
|
9 |
class PromptInput(BaseModel):
|
10 |
text: str = Field(..., description="The initial prompt text")
|
11 |
+
meta_prompt_choice: Literal["star", "done", "physics", "morphosis", "verse", "phor", "bolism", "math", "arpe"] = Field(..., description="Choice of meta prompt strategy")
|
12 |
|
13 |
+
class LLMResponse(BaseModel):
|
14 |
+
initial_prompt_evaluation: str = Field(default="")
|
15 |
+
refined_prompt: str = Field(default="")
|
16 |
+
explanation_of_refinements: str = Field(default="")
|
|
|
|
|
17 |
|
18 |
class PromptRefiner:
|
19 |
def __init__(self, api_token: str):
|
20 |
self.client = InferenceClient(token=api_token, timeout=300)
|
21 |
+
self.meta_prompts: Dict[str, str] = {
|
22 |
"morphosis": original_meta_prompt,
|
23 |
"verse": new_meta_prompt,
|
24 |
"physics": metaprompt1,
|
|
|
31 |
|
32 |
def refine_prompt(self, prompt_input: PromptInput) -> tuple:
|
33 |
try:
|
|
|
34 |
selected_meta_prompt = self.meta_prompts.get(
|
35 |
+
prompt_input.meta_prompt_choice,
|
36 |
advanced_meta_prompt
|
37 |
)
|
38 |
+
|
39 |
messages = [
|
40 |
{
|
41 |
+
"role": "system",
|
42 |
+
"content": '''You are an expert at refining prompts. Respond in JSON format with exactly these fields:
|
43 |
+
{
|
44 |
+
"initial_prompt_evaluation": "your evaluation of the initial prompt",
|
45 |
+
"refined_prompt": "your refined version of the prompt",
|
46 |
+
"explanation_of_refinements": "your explanation of the changes made"
|
47 |
+
}'''
|
48 |
},
|
49 |
{
|
50 |
+
"role": "user",
|
51 |
"content": selected_meta_prompt.replace("[Insert initial prompt here]", prompt_input.text)
|
52 |
}
|
53 |
]
|
|
|
56 |
model=prompt_refiner_model,
|
57 |
messages=messages,
|
58 |
max_tokens=2000,
|
59 |
+
temperature=0.8,
|
60 |
+
response_format={"type": "json_object"}
|
61 |
)
|
62 |
+
|
63 |
+
# Parse response using Pydantic
|
64 |
response_content = response.choices[0].message.content.strip()
|
65 |
+
try:
|
66 |
+
parsed_response = LLMResponse.model_validate_json(response_content)
|
67 |
+
result = parsed_response.model_dump()
|
68 |
+
except Exception as e:
|
69 |
+
# Fallback to basic dict if JSON parsing fails
|
70 |
+
result = {
|
71 |
+
"initial_prompt_evaluation": "Error parsing model response",
|
72 |
+
"refined_prompt": response_content,
|
73 |
+
"explanation_of_refinements": str(e)
|
74 |
+
}
|
75 |
+
|
76 |
return (
|
77 |
+
result["initial_prompt_evaluation"],
|
78 |
+
result["refined_prompt"],
|
79 |
+
result["explanation_of_refinements"],
|
80 |
result
|
81 |
)
|
82 |
|
83 |
except HfHubHTTPError as e:
|
84 |
+
error_response = LLMResponse(
|
85 |
+
initial_prompt_evaluation="Error: Model timeout",
|
86 |
+
refined_prompt="The model is currently experiencing high traffic",
|
87 |
+
explanation_of_refinements="Please try again later"
|
88 |
+
)
|
89 |
return (
|
90 |
+
error_response.initial_prompt_evaluation,
|
91 |
+
error_response.refined_prompt,
|
92 |
+
error_response.explanation_of_refinements,
|
93 |
+
error_response.model_dump()
|
94 |
)
|
95 |
except Exception as e:
|
96 |
+
error_response = LLMResponse(
|
97 |
+
initial_prompt_evaluation=f"Error: {str(e)}",
|
98 |
+
refined_prompt="",
|
99 |
+
explanation_of_refinements="An unexpected error occurred"
|
100 |
+
)
|
101 |
return (
|
102 |
+
error_response.initial_prompt_evaluation,
|
103 |
+
error_response.refined_prompt,
|
104 |
+
error_response.explanation_of_refinements,
|
105 |
+
error_response.model_dump()
|
106 |
)
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
def apply_prompt(self, prompt: str, model: str) -> str:
|
109 |
try:
|
110 |
messages = [
|
111 |
{
|
112 |
"role": "system",
|
113 |
+
"content": "You are a helpful assistant. Answer in stylized version with latex format or markdown if relevant. Separate your answer into logical sections using level 2 headers (##) for sections and bolding (**) for subsections."
|
114 |
},
|
115 |
{
|
116 |
"role": "user",
|
117 |
"content": prompt
|
118 |
}
|
119 |
]
|
120 |
+
|
121 |
response = self.client.chat_completion(
|
122 |
model=model,
|
123 |
messages=messages,
|
124 |
max_tokens=2000,
|
125 |
temperature=0.8
|
126 |
)
|
127 |
+
|
128 |
+
return response.choices[0].message.content.strip().replace('\n\n', '\n')
|
129 |
+
|
|
|
130 |
except Exception as e:
|
131 |
return f"Error: {str(e)}"
|
132 |
|
133 |
+
|
134 |
class GradioInterface:
|
135 |
def __init__(self, prompt_refiner: PromptRefiner):
|
136 |
self.prompt_refiner = prompt_refiner
|