Spaces:
Sleeping
Sleeping
File size: 1,386 Bytes
6e85301 090f39a 7fed9b9 375287a 7fed9b9 6e85301 7fed9b9 6e85301 c64851f 6e85301 090f39a 6e85301 7fed9b9 6e85301 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
from transformers import AutoTokenizer, pipeline
from optimum.onnxruntime import ORTModelForQuestionAnswering
import gradio as gr
model = ORTModelForQuestionAnswering.from_pretrained("optimum/roberta-base-squad2")
tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
onnx_qa = pipeline("question-answering", model=model, tokenizer=tokenizer)
# question = "What's my name??"
# context = "My name is Philipp and I live in Nuremberg."
def get_answer(context, question):
# question, context = inputs
pred = onnx_qa(question, context)
return pred
examples = [
["""In supervised learning, input data is provided to the model along with the output. In unsupervised learning, only input data is provided to the model. The goal of supervised learning is to train the model so that it can predict the output when it is given new data.""", "Explain supervised learning",],
# [] # You can add context examples without questions
]
demo = gr.Blocks()
with demo:
with gr.Row():
context = gr.Textbox(label='Document', lines=10)
question = gr.Textbox(label='Question', lines= 3)
b1 = gr.Button('Get Answer')
answer = gr.Textbox(label='Answer', lines=4)
gr.Examples(examples= examples, inputs=[context, question], outputs=answer)
b1.click(fn = get_answer, inputs=[context, question], outputs=answer)
demo.launch()
|