File size: 29,511 Bytes
11353d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Berhasil terkoneksi ke MySQL Server\n",
      "Database 'tourism_destination' berhasil dibuat!\n",
      "Koneksi ke MySQL ditutup\n"
     ]
    }
   ],
   "source": [
    "import mysql.connector\n",
    "from mysql.connector import Error\n",
    "\n",
    "# Fungsi untuk membuat koneksi ke MySQL dan membuat database\n",
    "def create_database(host_name, user_name, user_password, db_name):\n",
    "    try:\n",
    "        # Koneksi ke server MySQL\n",
    "        connection = mysql.connector.connect(\n",
    "            host=host_name,\n",
    "            user=user_name,\n",
    "            password=user_password\n",
    "        )\n",
    "        \n",
    "        if connection.is_connected():\n",
    "            print(\"Berhasil terkoneksi ke MySQL Server\")\n",
    "            cursor = connection.cursor()\n",
    "            # Membuat database baru\n",
    "            cursor.execute(f\"CREATE DATABASE {db_name}\")\n",
    "            print(f\"Database '{db_name}' berhasil dibuat!\")\n",
    "    \n",
    "    except Error as e:\n",
    "        print(f\"Error: '{e}' terjadi\")\n",
    "    \n",
    "    finally:\n",
    "        # Menutup koneksi\n",
    "        if connection.is_connected():\n",
    "            cursor.close()\n",
    "            connection.close()\n",
    "            print(\"Koneksi ke MySQL ditutup\")\n",
    "\n",
    "# Contoh penggunaan\n",
    "host = \"localhost\"\n",
    "user = \"root\"\n",
    "password = \"admin123\"\n",
    "database_name = \"tourism_destination\"\n",
    "\n",
    "create_database(host, user, password, database_name)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Berhasil terkoneksi ke database 'tourism_destination'\n",
      "Tabel 'places' berhasil dibuat!\n",
      "Koneksi ke MySQL ditutup\n"
     ]
    }
   ],
   "source": [
    "def create_table(host_name, user_name, user_password, db_name):\n",
    "    try:\n",
    "        # Koneksi ke MySQL dan pilih database\n",
    "        connection = mysql.connector.connect(\n",
    "            host=host_name,\n",
    "            user=user_name,\n",
    "            password=user_password,\n",
    "            database=db_name\n",
    "        )\n",
    "        \n",
    "        if connection.is_connected():\n",
    "            print(f\"Berhasil terkoneksi ke database '{db_name}'\")\n",
    "            cursor = connection.cursor()\n",
    "            \n",
    "            # Membuat tabel dengan kolom sesuai format yang diberikan\n",
    "            create_table_query = \"\"\"\n",
    "            CREATE TABLE places (\n",
    "                Place_Id INT AUTO_INCREMENT PRIMARY KEY,\n",
    "                Place_Name VARCHAR(255) NOT NULL,\n",
    "                Description TEXT,\n",
    "                Category VARCHAR(100),\n",
    "                City VARCHAR(100),\n",
    "                Price DECIMAL(10, 2),  \n",
    "                Rating FLOAT \n",
    "            );\n",
    "            \"\"\"\n",
    "            cursor.execute(create_table_query)\n",
    "            print(\"Tabel 'places' berhasil dibuat!\")\n",
    "    \n",
    "    except Error as e:\n",
    "        print(f\"Error: '{e}' terjadi\")\n",
    "    \n",
    "    finally:\n",
    "        # Menutup koneksi\n",
    "        if connection.is_connected():\n",
    "            cursor.close()\n",
    "            connection.close()\n",
    "            print(\"Koneksi ke MySQL ditutup\")\n",
    "\n",
    "# Contoh penggunaan\n",
    "host = \"localhost\"\n",
    "user = \"root\"\n",
    "password = \"admin123\"\n",
    "database_name = \"tourism_destination\"\n",
    "\n",
    "create_table(host, user, password, database_name)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Place_Id</th>\n",
       "      <th>Place_Name</th>\n",
       "      <th>Description</th>\n",
       "      <th>Category</th>\n",
       "      <th>City</th>\n",
       "      <th>Price</th>\n",
       "      <th>Rating</th>\n",
       "      <th>Time_Minutes</th>\n",
       "      <th>Coordinate</th>\n",
       "      <th>Lat</th>\n",
       "      <th>Long</th>\n",
       "      <th>Unnamed: 11</th>\n",
       "      <th>Unnamed: 12</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>1</td>\n",
       "      <td>Monumen Nasional</td>\n",
       "      <td>Monumen Nasional atau yang populer disingkat d...</td>\n",
       "      <td>Budaya</td>\n",
       "      <td>Jakarta</td>\n",
       "      <td>20000</td>\n",
       "      <td>4.6</td>\n",
       "      <td>15.0</td>\n",
       "      <td>{'lat': -6.1753924, 'lng': 106.8271528}</td>\n",
       "      <td>-6.175392</td>\n",
       "      <td>106.827153</td>\n",
       "      <td>NaN</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>2</td>\n",
       "      <td>Kota Tua</td>\n",
       "      <td>Kota tua di Jakarta, yang juga bernama Kota Tu...</td>\n",
       "      <td>Budaya</td>\n",
       "      <td>Jakarta</td>\n",
       "      <td>0</td>\n",
       "      <td>4.6</td>\n",
       "      <td>90.0</td>\n",
       "      <td>{'lat': -6.137644799999999, 'lng': 106.8171245}</td>\n",
       "      <td>-6.137645</td>\n",
       "      <td>106.817125</td>\n",
       "      <td>NaN</td>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>3</td>\n",
       "      <td>Dunia Fantasi</td>\n",
       "      <td>Dunia Fantasi atau disebut juga Dufan adalah t...</td>\n",
       "      <td>Taman Hiburan</td>\n",
       "      <td>Jakarta</td>\n",
       "      <td>270000</td>\n",
       "      <td>4.6</td>\n",
       "      <td>360.0</td>\n",
       "      <td>{'lat': -6.125312399999999, 'lng': 106.8335377}</td>\n",
       "      <td>-6.125312</td>\n",
       "      <td>106.833538</td>\n",
       "      <td>NaN</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>4</td>\n",
       "      <td>Taman Mini Indonesia Indah (TMII)</td>\n",
       "      <td>Taman Mini Indonesia Indah merupakan suatu kaw...</td>\n",
       "      <td>Taman Hiburan</td>\n",
       "      <td>Jakarta</td>\n",
       "      <td>10000</td>\n",
       "      <td>4.5</td>\n",
       "      <td>NaN</td>\n",
       "      <td>{'lat': -6.302445899999999, 'lng': 106.8951559}</td>\n",
       "      <td>-6.302446</td>\n",
       "      <td>106.895156</td>\n",
       "      <td>NaN</td>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>5</td>\n",
       "      <td>Atlantis Water Adventure</td>\n",
       "      <td>Atlantis Water Adventure atau dikenal dengan A...</td>\n",
       "      <td>Taman Hiburan</td>\n",
       "      <td>Jakarta</td>\n",
       "      <td>94000</td>\n",
       "      <td>4.5</td>\n",
       "      <td>60.0</td>\n",
       "      <td>{'lat': -6.12419, 'lng': 106.839134}</td>\n",
       "      <td>-6.124190</td>\n",
       "      <td>106.839134</td>\n",
       "      <td>NaN</td>\n",
       "      <td>5</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   Place_Id                         Place_Name  \\\n",
       "0         1                   Monumen Nasional   \n",
       "1         2                           Kota Tua   \n",
       "2         3                      Dunia Fantasi   \n",
       "3         4  Taman Mini Indonesia Indah (TMII)   \n",
       "4         5           Atlantis Water Adventure   \n",
       "\n",
       "                                         Description       Category     City  \\\n",
       "0  Monumen Nasional atau yang populer disingkat d...         Budaya  Jakarta   \n",
       "1  Kota tua di Jakarta, yang juga bernama Kota Tu...         Budaya  Jakarta   \n",
       "2  Dunia Fantasi atau disebut juga Dufan adalah t...  Taman Hiburan  Jakarta   \n",
       "3  Taman Mini Indonesia Indah merupakan suatu kaw...  Taman Hiburan  Jakarta   \n",
       "4  Atlantis Water Adventure atau dikenal dengan A...  Taman Hiburan  Jakarta   \n",
       "\n",
       "    Price  Rating  Time_Minutes  \\\n",
       "0   20000     4.6          15.0   \n",
       "1       0     4.6          90.0   \n",
       "2  270000     4.6         360.0   \n",
       "3   10000     4.5           NaN   \n",
       "4   94000     4.5          60.0   \n",
       "\n",
       "                                        Coordinate       Lat        Long  \\\n",
       "0          {'lat': -6.1753924, 'lng': 106.8271528} -6.175392  106.827153   \n",
       "1  {'lat': -6.137644799999999, 'lng': 106.8171245} -6.137645  106.817125   \n",
       "2  {'lat': -6.125312399999999, 'lng': 106.8335377} -6.125312  106.833538   \n",
       "3  {'lat': -6.302445899999999, 'lng': 106.8951559} -6.302446  106.895156   \n",
       "4             {'lat': -6.12419, 'lng': 106.839134} -6.124190  106.839134   \n",
       "\n",
       "   Unnamed: 11  Unnamed: 12  \n",
       "0          NaN            1  \n",
       "1          NaN            2  \n",
       "2          NaN            3  \n",
       "3          NaN            4  \n",
       "4          NaN            5  "
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data = pd.read_csv(r'dataset_recommendation_tourism\\tourism_with_id.csv')\n",
    "data.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Index(['Place_Id', 'Place_Name', 'Description', 'Category', 'City', 'Price',\n",
       "       'Rating', 'Time_Minutes', 'Coordinate', 'Lat', 'Long', 'Unnamed: 11',\n",
       "       'Unnamed: 12'],\n",
       "      dtype='object')"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data.columns"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Index(['Place_Id', 'Place_Name', 'Description', 'Category', 'City', 'Price',\n",
       "       'Rating'],\n",
       "      dtype='object')"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data = data.drop(['Time_Minutes', 'Coordinate',\n",
    "                'Lat', 'Long', 'Unnamed: 11',\n",
    "                'Unnamed: 12'], axis=1)\n",
    "data.columns"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "data.to_csv('tourism_place.csv')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<class 'pandas.core.frame.DataFrame'>\n",
      "RangeIndex: 437 entries, 0 to 436\n",
      "Data columns (total 7 columns):\n",
      " #   Column       Non-Null Count  Dtype  \n",
      "---  ------       --------------  -----  \n",
      " 0   Place_Id     437 non-null    int64  \n",
      " 1   Place_Name   437 non-null    object \n",
      " 2   Description  437 non-null    object \n",
      " 3   Category     437 non-null    object \n",
      " 4   City         437 non-null    object \n",
      " 5   Price        437 non-null    int64  \n",
      " 6   Rating       437 non-null    float64\n",
      "dtypes: float64(1), int64(2), object(4)\n",
      "memory usage: 24.0+ KB\n"
     ]
    }
   ],
   "source": [
    "data.info()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Place_Id</th>\n",
       "      <th>Place_Name</th>\n",
       "      <th>Description</th>\n",
       "      <th>Category</th>\n",
       "      <th>City</th>\n",
       "      <th>Price</th>\n",
       "      <th>Rating</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>1</td>\n",
       "      <td>Monumen Nasional</td>\n",
       "      <td>Monumen Nasional atau yang populer disingkat d...</td>\n",
       "      <td>Budaya</td>\n",
       "      <td>Jakarta</td>\n",
       "      <td>20000</td>\n",
       "      <td>4.6</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>2</td>\n",
       "      <td>Kota Tua</td>\n",
       "      <td>Kota tua di Jakarta, yang juga bernama Kota Tu...</td>\n",
       "      <td>Budaya</td>\n",
       "      <td>Jakarta</td>\n",
       "      <td>0</td>\n",
       "      <td>4.6</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>3</td>\n",
       "      <td>Dunia Fantasi</td>\n",
       "      <td>Dunia Fantasi atau disebut juga Dufan adalah t...</td>\n",
       "      <td>Taman Hiburan</td>\n",
       "      <td>Jakarta</td>\n",
       "      <td>270000</td>\n",
       "      <td>4.6</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>4</td>\n",
       "      <td>Taman Mini Indonesia Indah (TMII)</td>\n",
       "      <td>Taman Mini Indonesia Indah merupakan suatu kaw...</td>\n",
       "      <td>Taman Hiburan</td>\n",
       "      <td>Jakarta</td>\n",
       "      <td>10000</td>\n",
       "      <td>4.5</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>5</td>\n",
       "      <td>Atlantis Water Adventure</td>\n",
       "      <td>Atlantis Water Adventure atau dikenal dengan A...</td>\n",
       "      <td>Taman Hiburan</td>\n",
       "      <td>Jakarta</td>\n",
       "      <td>94000</td>\n",
       "      <td>4.5</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   Place_Id                         Place_Name  \\\n",
       "0         1                   Monumen Nasional   \n",
       "1         2                           Kota Tua   \n",
       "2         3                      Dunia Fantasi   \n",
       "3         4  Taman Mini Indonesia Indah (TMII)   \n",
       "4         5           Atlantis Water Adventure   \n",
       "\n",
       "                                         Description       Category     City  \\\n",
       "0  Monumen Nasional atau yang populer disingkat d...         Budaya  Jakarta   \n",
       "1  Kota tua di Jakarta, yang juga bernama Kota Tu...         Budaya  Jakarta   \n",
       "2  Dunia Fantasi atau disebut juga Dufan adalah t...  Taman Hiburan  Jakarta   \n",
       "3  Taman Mini Indonesia Indah merupakan suatu kaw...  Taman Hiburan  Jakarta   \n",
       "4  Atlantis Water Adventure atau dikenal dengan A...  Taman Hiburan  Jakarta   \n",
       "\n",
       "    Price  Rating  \n",
       "0   20000     4.6  \n",
       "1       0     4.6  \n",
       "2  270000     4.6  \n",
       "3   10000     4.5  \n",
       "4   94000     4.5  "
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "d:\\Data Science\\HACKATHON\\GEN AI LLAMA HACKTIV8\\llama_venv\\Lib\\site-packages\\sentence_transformers\\cross_encoder\\CrossEncoder.py:11: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from tqdm.autonotebook import tqdm, trange\n"
     ]
    }
   ],
   "source": [
    "import mysql.connector\n",
    "from mysql.connector import Error\n",
    "import ollama\n",
    "from sentence_transformers import SentenceTransformer\n",
    "from sklearn.metrics.pairwise import cosine_similarity\n",
    "from tqdm import tqdm\n",
    "import numpy as np"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "def connect_to_database():\n",
    "    try:\n",
    "        connection = mysql.connector.connect(\n",
    "            host=\"localhost\",\n",
    "            user=\"root\",\n",
    "            password=\"admin123\",\n",
    "            database=\"tourism_destination\"\n",
    "        )\n",
    "        return connection\n",
    "    except Error as e:\n",
    "        print(f\"Error: '{e}'\")\n",
    "        return None\n",
    "    \n",
    "    # Function to check if a column exists, and add it if necessary\n",
    "def add_embedding_column_if_not_exists(cursor):\n",
    "    # Check if the 'Embedding' column exists\n",
    "    cursor.execute(\"SHOW COLUMNS FROM places LIKE 'Embedding'\")\n",
    "    result = cursor.fetchone()\n",
    "    \n",
    "    # If the 'Embedding' column does not exist, add it\n",
    "    if not result:\n",
    "        print(\"Adding 'Embedding' column to the table...\")\n",
    "        cursor.execute(\"ALTER TABLE places ADD COLUMN Embedding TEXT\")\n",
    "        print(\"'Embedding' column added.\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Adding 'Embedding' column to the table...\n"
     ]
    }
   ],
   "source": [
    "connection = connect_to_database()\n",
    "cursor = connection.cursor()\n",
    "add_embedding_column_if_not_exists(cursor)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "d:\\Data Science\\HACKATHON\\GEN AI LLAMA HACKTIV8\\llama_venv\\Lib\\site-packages\\transformers\\tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884\n",
      "  warnings.warn(\n"
     ]
    }
   ],
   "source": [
    "# Koneksi ke MySQL\n",
    "def connect_to_database():\n",
    "    try:\n",
    "        connection = mysql.connector.connect(\n",
    "            host=\"localhost\",\n",
    "            user=\"root\",\n",
    "            password=\"admin123\",\n",
    "            database=\"tourism_destination\"\n",
    "        )\n",
    "        return connection\n",
    "    except Error as e:\n",
    "        print(f\"Error: '{e}'\")\n",
    "        return None\n",
    "\n",
    "\n",
    "\n",
    "# Compute and store embeddings\n",
    "def compute_and_store_embeddings():\n",
    "    model = SentenceTransformer('paraphrase-MiniLM-L6-v2')  \n",
    "\n",
    "    # Connect to the database\n",
    "    connection = connect_to_database()\n",
    "    if connection is None:\n",
    "        return\n",
    "    \n",
    "    cursor = connection.cursor(dictionary=True)\n",
    "    \n",
    "    # Select all places from the database\n",
    "    cursor.execute(\"SELECT Place_Id, Place_Name, Category, Description, City FROM places\")\n",
    "    places = cursor.fetchall()\n",
    "    \n",
    "    for place in places:\n",
    "        # Combine PlaceName, Category, Description, and City into one string\n",
    "        text = f\"{place['Place_Name']} {place['Category']} {place['Description']} {place['City']}\"\n",
    "        \n",
    "        # Generate embedding for the combined text\n",
    "        embedding = model.encode(text)\n",
    "        \n",
    "        # Convert embedding to a string format to store in the database\n",
    "        embedding_str = ','.join([str(x) for x in embedding])\n",
    "        \n",
    "        # Update the place in the database with the embedding\n",
    "        cursor.execute(\n",
    "            \"UPDATE places SET Embedding = %s WHERE Place_Id = %s\", \n",
    "            (embedding_str, place['Place_Id'])\n",
    "        )\n",
    "    \n",
    "    # Commit the changes and close the connection\n",
    "    connection.commit()\n",
    "    cursor.close()\n",
    "    connection.close()\n",
    "\n",
    "# Run the function to compute and store embeddings\n",
    "compute_and_store_embeddings()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "d:\\Data Science\\HACKATHON\\GEN AI LLAMA HACKTIV8\\llama_venv\\Lib\\site-packages\\transformers\\tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884\n",
      "  warnings.warn(\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Top 5 Ranked Destinations:\n",
      "\n",
      "Pulau Semak Daun (Rating: 4.0, Similarity Score: 0.6861)\n",
      "Wisata Batu Kuda (Rating: 4.4, Similarity Score: 0.6839)\n",
      "Gedung Agung Yogyakarta (Rating: 4.6, Similarity Score: 0.6727)\n",
      "Taman Sungai Mudal (Rating: 4.6, Similarity Score: 0.6595)\n",
      "Grand Maerakaca (Rating: 4.4, Similarity Score: 0.6581)\n"
     ]
    }
   ],
   "source": [
    "# Koneksi ke MySQL\n",
    "def query_database():\n",
    "    try:\n",
    "        connection = mysql.connector.connect(\n",
    "            host=\"localhost\",\n",
    "            user=\"root\",\n",
    "            password=\"admin123\",\n",
    "            database=\"tourism_destination\"\n",
    "        )\n",
    "\n",
    "        if connection.is_connected():\n",
    "            cursor = connection.cursor(dictionary=True)\n",
    "            sql = \"SELECT * FROM places\"\n",
    "            cursor.execute(sql)\n",
    "            results = cursor.fetchall()\n",
    "            return results\n",
    "\n",
    "    except Error as e:\n",
    "        print(f\"Error: '{e}'\")\n",
    "    \n",
    "    finally:\n",
    "        if connection.is_connected():\n",
    "            cursor.close()\n",
    "            connection.close()\n",
    "\n",
    "# Get embedding from the database and calculate cosine similarity\n",
    "def get_similar_places(user_embedding, db_results):\n",
    "    similarities = []\n",
    "    \n",
    "    for place in db_results:\n",
    "        embedding_str = place['Embedding']  # Assuming embeddings are stored as comma-separated strings in the database\n",
    "        embedding = np.array([float(x) for x in embedding_str.split(',')])  # Convert the string back to a numpy array\n",
    "        \n",
    "        # Compute cosine similarity\n",
    "        similarity = cosine_similarity([user_embedding], [embedding])[0][0]\n",
    "        similarities.append((place, similarity))\n",
    "    \n",
    "    # Sort results based on similarity and then by rating\n",
    "    ranked_results = sorted(similarities, key=lambda x: (x[1], x[0]['Rating']), reverse=True)\n",
    "    \n",
    "    # Return top 5 places\n",
    "    return ranked_results[:5]\n",
    "\n",
    "# Ollama - Generate possible places (Retrieval Augmented Generation)\n",
    "def generate_rag_result(user_query):\n",
    "    prompt = f\"User Query: {user_query}\\n\\nPlease list 10 potential destinations based on user query:\"\n",
    "    \n",
    "    print(\"\\nGenerating results using Ollama (RAG)...\\n\")\n",
    "    with tqdm(total=10, desc=\"Processing RAG\") as pbar:\n",
    "        response = ollama.generate(model=\"llama3.1\", prompt=prompt)\n",
    "        pbar.update(5)\n",
    "    \n",
    "    # Process the response (assuming response structure is consistent)\n",
    "    print(\"Full response:\", response)\n",
    "    return response  # For now, we don't need to extract specific places, as similarity search will handle that\n",
    "\n",
    "# Main function to find the top 5 destinations\n",
    "def get_top_5_destinations(user_query):\n",
    "    # Step 1: Generate embedding for user query\n",
    "    model = SentenceTransformer('paraphrase-MiniLM-L6-v2')\n",
    "    user_embedding = model.encode(user_query)\n",
    "    \n",
    "    # Step 2: Fetch all places from the database\n",
    "    db_results = query_database()\n",
    "    if not db_results or len(db_results) == 0:\n",
    "        print(\"No data returned from database.\")\n",
    "        return\n",
    "    \n",
    "    # Step 3: Find the most similar places\n",
    "    top_5_places = get_similar_places(user_embedding, db_results)\n",
    "    \n",
    "    # Step 4: Display top 5 destinations\n",
    "    print(\"\\nTop 5 Ranked Destinations:\\n\")\n",
    "    for place, score in top_5_places:\n",
    "        print(f\"{place['Place_Name']} (Rating: {place['Rating']}, Similarity Score: {score:.4f})\")\n",
    "\n",
    "# Example user query\n",
    "user_query = \"Saya ingin ke Jogjakarta dan saya suka dengan pemandangan alam. kemana saya harus pergi?\"\n",
    "get_top_5_destinations(user_query)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "# prompt= \"do u know about LLM?\"\n",
    "# response = ollama.generate(model=\"llama3.1\", prompt=prompt)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "# response['response'].strip().split('\\n')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "d:\\Data Science\\HACKATHON\\GEN AI LLAMA HACKTIV8\\llama_venv\\Lib\\site-packages\\transformers\\tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884\n",
      "  warnings.warn(\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Top 5 Ranked Destinations:\n",
      "\n",
      "Pulau Semak Daun (Rating: 4.0, Similarity Score: 0.6407)\n",
      "Jembatan Merah (Rating: 4.5, Similarity Score: 0.6401)\n",
      "Pasar Beringharjo (Rating: 4.5, Similarity Score: 0.6331)\n",
      "Gereja Perawan Maria Tak Berdosa Surabaya (Rating: 4.8, Similarity Score: 0.6286)\n",
      "Perpustakaan Nasional (Rating: 4.7, Similarity Score: 0.6256)\n"
     ]
    }
   ],
   "source": [
    "# Example user query\n",
    "user_query = \"Saya ingin ke Surabaya dan ingin berbelanja. kemana saya harus pergi?\"\n",
    "get_top_5_destinations(user_query)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "llama_venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}