File size: 19,448 Bytes
32a1d6d
6219213
32a1d6d
 
 
 
 
 
7c72cf3
 
32a1d6d
7c72cf3
 
 
32a1d6d
 
 
 
 
9fdfa40
39b715b
 
 
 
 
 
7c72cf3
 
 
 
 
 
 
 
 
 
32a1d6d
6219213
 
 
 
32a1d6d
 
 
 
7c72cf3
32a1d6d
 
 
 
 
 
 
 
 
 
 
7c72cf3
32a1d6d
7c72cf3
32a1d6d
 
 
 
 
 
 
 
 
 
 
 
7c72cf3
32a1d6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c72cf3
 
 
32a1d6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c72cf3
 
 
 
 
 
32a1d6d
7c72cf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32a1d6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c72cf3
32a1d6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c72cf3
32a1d6d
 
 
 
 
 
 
 
 
 
 
 
7c72cf3
32a1d6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c72cf3
32a1d6d
 
 
b5f1d6d
32a1d6d
 
 
 
 
 
7c72cf3
32a1d6d
 
 
 
 
 
 
 
 
7c72cf3
32a1d6d
 
 
 
 
 
 
 
 
 
7c72cf3
 
32a1d6d
 
 
 
 
 
 
7c72cf3
 
 
 
32a1d6d
7c72cf3
 
32a1d6d
7c72cf3
 
 
 
 
 
 
32a1d6d
 
 
 
 
7c72cf3
 
 
 
 
 
 
 
 
 
 
 
 
 
32a1d6d
 
 
 
7c72cf3
 
 
 
 
32a1d6d
 
 
 
 
 
 
 
7c72cf3
 
 
 
 
 
 
32a1d6d
 
7c72cf3
 
 
 
 
 
32a1d6d
 
 
 
7c72cf3
32a1d6d
 
7c72cf3
 
 
 
 
 
32a1d6d
 
55b0e27
 
 
 
 
32a1d6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c72cf3
 
 
32a1d6d
 
 
 
7c72cf3
 
 
32a1d6d
 
 
 
 
 
7c72cf3
32a1d6d
7c72cf3
 
 
 
 
 
 
 
32a1d6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c72cf3
 
 
 
 
 
 
32a1d6d
 
 
 
7c72cf3
 
 
32a1d6d
 
 
 
7c72cf3
32a1d6d
7c72cf3
 
 
 
 
 
 
32a1d6d
7c72cf3
 
 
32a1d6d
 
 
 
 
 
 
 
 
 
 
 
7c72cf3
 
 
 
32a1d6d
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
import time
import os
from functools import lru_cache

import pandas as pd
import streamlit as st
import streamlit_ace as stace
import duckdb
import numpy as np  # for user session
import scipy  # for user session
import plotly_express
import plotly.express as px  # for user session
import plotly.figure_factory as ff  # for user session
import matplotlib.pyplot as plt  # for user session
import sklearn
from ydata_profiling import ProfileReport
from streamlit_pandas_profiling import st_profile_report

st.set_page_config(page_title="PySQLify", page_icon="πŸ”Ž", layout="wide")
st.title("Auto-PySQLify")
header = """
> _Automated Data Analysis_ Tool for analzying datasets with auto generated Python / SQL code using natural language.

> `GPT-powered` and `Jupyter notebook-inspired`
"""
st.markdown(header, unsafe_allow_html=True)
st.markdown(
    "> <sub>[NYC AI Hackathon](https://tech.cornell.edu/events/nyc-gpt-llm-hackathon/) April, 23 2023</sub>",
    unsafe_allow_html=True,
)


if "ANTHROPIC_API_KEY" not in os.environ:
    os.environ["ANTHROPIC_API_KEY"] = st.text_input(
        "Anthropic API Key", type="password"
    )

if "OPENAI_API_KEY" not in os.environ:
    os.environ["OPENAI_API_KEY"] = st.text_input("OpenAI API Key", type="password")


p = st.write
print = st.write
display = st.write


@st.cache_data
def _read_csv(f, **kwargs):
    df = pd.read_csv(f, on_bad_lines="skip", **kwargs)
    # clean
    df.columns = [c.strip() for c in df.columns]
    return df


def timer(func):
    def wrapper_function(*args, **kwargs):
        start_time = time.time()
        func(*args, **kwargs)
        st.write(f"`{(time.time() - start_time):.2f}s.`")

    return wrapper_function


SAMPLE_DATA = {
    "Churn dataset": "https://raw.githubusercontent.com/AtashfarazNavid/MachineLearing-ChurnModeling/main/Streamlit-WebApp-1/Churn.csv",
    "Periodic Table": "https://gist.githubusercontent.com/GoodmanSciences/c2dd862cd38f21b0ad36b8f96b4bf1ee/raw/1d92663004489a5b6926e944c1b3d9ec5c40900e/Periodic%2520Table%2520of%2520Elements.csv",
    "Movies": "https://raw.githubusercontent.com/reisanar/datasets/master/HollywoodMovies.csv",
    "Iris Flower": "https://gist.githubusercontent.com/netj/8836201/raw/6f9306ad21398ea43cba4f7d537619d0e07d5ae3/iris.csv",
    "World Population": "https://gist.githubusercontent.com/curran/13d30e855d48cdd6f22acdf0afe27286/raw/0635f14817ec634833bb904a47594cc2f5f9dbf8/worldcities_clean.csv",
    "Country Table": "https://raw.githubusercontent.com/datasciencedojo/datasets/master/WorldDBTables/CountryTable.csv",
    "World Cities": "https://raw.githubusercontent.com/dr5hn/countries-states-cities-database/master/csv/cities.csv",
    "World States": "https://raw.githubusercontent.com/dr5hn/countries-states-cities-database/master/csv/states.csv",
    "World Countries": "https://raw.githubusercontent.com/dr5hn/countries-states-cities-database/master/csv/countries.csv",
}


def read_data():
    txt = "Upload a data file (supported files: .csv)"
    placeholder = st.empty()
    with placeholder:
        col1, col2, col3 = st.columns([3, 2, 1])
        with col1:
            file_ = st.file_uploader(txt, help="TODO: .tsv, .xls, .xlsx")
        with col2:
            url = st.text_input(
                "Read from a URL",
                placeholder="Enter URL (supported types: .csv and .tsv)",
            )
            if url:
                file_ = url
        with col3:
            selected = st.selectbox(
                "Select a sample dataset", options=[""] + list(SAMPLE_DATA)
            )
            if selected:
                file_ = SAMPLE_DATA[selected]

    if not file_:
        st.stop()

    placeholder.empty()
    # kwargs = {"skiprows": st.number_input("skip header", value=0, max_value=10)}
    kwargs = {"skiprows": 0}
    try:
        return _read_csv(file_, **kwargs)
    except Exception as e:
        st.warning("Unsupported file type!")
        st.stop()


def display(df):
    view_info = st.sidebar.checkbox("view data types")
    st.dataframe(df, use_container_width=True)

    # info
    st.markdown(f"> <sup>shape `{df.shape}`</sup>", unsafe_allow_html=True)

    if view_info:
        types_ = df.dtypes.to_dict()
        types_ = [{"Column": c, "Type": t} for c, t in types_.items()]
        df_ = pd.DataFrame(types_)
        st.sidebar.subheader("TABLE DETAILS")
        st.sidebar.write(df_)


def code_editor(language, hint, show_panel, key=None, content=None):
    # Spawn a new Ace editor
    placeholder = st.empty()

    default_theme = "solarized_dark" if language == "sql" else "chrome"

    with placeholder.expander("CELL CONFIG"):
        # configs
        _THEMES = stace.THEMES
        _KEYBINDINGS = stace.KEYBINDINGS
        col21, col22 = st.columns(2)
        with col21:
            theme = st.selectbox(
                "Theme", options=[default_theme] + _THEMES, key=f"{language}1{key}"
            )
            tab_size = st.slider(
                "Tab size", min_value=1, max_value=8, value=4, key=f"{language}2{key}"
            )
        with col22:
            keybinding = st.selectbox(
                "Keybinding",
                options=[_KEYBINDINGS[-2]] + _KEYBINDINGS,
                key=f"{language}3{key}",
            )
            font_size = st.slider(
                "Font size",
                min_value=5,
                max_value=24,
                value=14,
                key=f"{language}4{key}",
            )
        height = st.slider(
            "Editor height", value=130, max_value=777, key=f"{language}5{key}"
        )
        # kwargs = {theme: theme, keybinding: keybinding} # TODO: DRY
    if not show_panel:
        placeholder.empty()

    content = stace.st_ace(
        value=content if content else "",
        language=language,
        height=height,
        show_gutter=False,
        # annotations="",
        placeholder=hint,
        keybinding=keybinding,
        theme=theme,
        font_size=font_size,
        tab_size=tab_size,
        key=key,
    )

    # Display editor's content as you type
    # content
    return content


@st.cache_data
def query_data(sql, df):
    try:
        return duckdb.query(sql).df()
    except Exception as e:
        st.warning("Invalid Query!")
        # st.stop()


def download(df, key, save_as="results.csv"):
    # -- to download
    # @st.cache_data
    def convert_df(_df):
        return _df.to_csv().encode("utf-8")

    csv = convert_df(df)
    st.download_button("Download", csv, save_as, "text/csv", key=key)


def display_results(query: str, result: pd.DataFrame, key: str):
    st.dataframe(result, use_container_width=True)
    st.markdown(f"> `{result.shape}`")
    download(result, key=key)


@timer
def run_python_script(user_script, key):
    if user_script.startswith("st.") or ";" in user_script:
        py = user_script
    elif user_script.endswith("?"):  # -- same as ? in Jupyter Notebook
        in_ = user_script.replace("?", "")
        py = f"st.help({in_})"
    else:
        py = f"st.write({user_script})"
    try:
        cmds = py.split(";")
        for cmd in cmds:
            exec(cmd)
    except Exception as e:
        c1, c2 = st.columns(2)
        c1.warning("Wrong Python command.")
        if c2.button("Show error", key=key):
            st.exception(e)


@st.cache_resource
def data_profiler(df):
    return ProfileReport(df, title="Profiling Report")


def docs():
    content = """
    
    # What

    Upload a dataset to process (manipulate/analyze) it using SQL and Python, similar to running Jupyter Notebooks.
    To get started, drag and drop the dataset file, read from a URL, or select a sample dataset. To load a new dataset, refresh the webpage.
    > <sub>[_src code_ here](https://github.com/iamaziz/sqlify)</sub>

    More public datasets available [here](https://github.com/fivethirtyeight/data).

    # Usage

    Example usage

    > After loading the sample Iris dataset from sklearn (or select it from the dropdown list), the lines below can be executed inside a Python cell:

    ```python

    from sklearn.datasets import load_iris;
    from sklearn import tree;
    iris = load_iris();
    X, y = iris.data, iris.target;
    clf = tree.DecisionTreeClassifier(max_depth=4);
    clf = clf.fit(X, y);
    plt.figure(figsize=(7,3));
    fig, ax = plt.subplots()
    tree.plot_tree(clf, filled=True, fontsize=4);
    st.pyplot(fig)
    ```
    
    Which outputs the tree below:
    
    > <img width="1000" alt="image" src="https://user-images.githubusercontent.com/3298308/222992623-1dba9bad-4858-43b6-84bf-9d7cf78d61f7.png">

    # SCREENSHOTS

    ## _EXAMPLE 1_
    ![image](https://user-images.githubusercontent.com/3298308/222946054-a92ea42c-ffe6-4958-900b-2b72056216f8.png)

    ## _EXAMPLE 2_
    ![image](https://user-images.githubusercontent.com/3298308/222947315-f2c06063-dd18-4215-bbab-c1b2f3f00888.png)
    ![image](https://user-images.githubusercontent.com/3298308/222947321-c7e38d9d-7274-4368-91c1-1548b0da14dc.png)

    ## _EXAMPLE 3_
    ![image](https://user-images.githubusercontent.com/3298308/222949287-2024a75f-04db-4861-93b5-c43d206e2dc6.png)

    ## _EXAMPLE 4_
    ![image](https://user-images.githubusercontent.com/3298308/222984104-0bfd806f-ecd9-455e-b368-181f9aa0225b.png)

    """

    with st.expander("READE"):
        st.markdown(content, unsafe_allow_html=True)

        return st.checkbox("Show more code examples")


def display_example_snippets():
    from glob import glob

    examples = glob("./examples/*")
    with st.expander("EXAMPLES"):
        example = st.selectbox("", options=[""] + examples)
        if example:
            with open(example, "r") as f:
                content = f.read()
            st.code(content)


class GPTWrapper:
    def __init__(self):  # , df_info):

        from gpt import AnthropicSerivce, OpenAIService

        # self.anthropic_model = AnthropicSerivce()
        self.df_info = df_info

    @staticmethod
    @st.cache_data
    def ask_sql(df_info, question):
        from gpt import OpenAIService

        openai_model = OpenAIService()
        prompt = GPTWrapper().build_sql_prompt(df_info, question)
        res = openai_model.prompt(prompt)
        return res, prompt

    @staticmethod
    @st.cache_data
    def ask_python(df_info, question):
        from gpt import OpenAIService

        openai_model = OpenAIService()
        prompt = GPTWrapper().build_python_prompt(df_info, question)
        res = openai_model.prompt(prompt)
        return res, prompt

    @staticmethod
    @st.cache_data
    def build_sql_prompt(df_info, question):
        prompt = f"""I have data in a pandas dataframe, here is the data schema: {df_info} 
        Next, I will ask you a question. Assume the table name is `df`.
        And you will answer in writing a SQL query only by using the table `df` and shema above.
        Here is the question: {question}.
        """
        return prompt

    @staticmethod
    @st.cache_data
    def build_python_prompt(df_info, question):
        prompt = f"""I have data in a pandas dataframe, here is the dataframe schema: {df_info}
        Next, I will ask you a question. Assume the data is stored in a variable named `df`.
        And you will answer in writing a Python code only by using the variable `df` and shema above.
        
        Here are some instructions you must follow when writing the code:

        - The answer must be Python code only.
        - The code must include column names from the dataframe schema above only.
        - Import any required libraries in the first line of the generated code.
        - Use `df` as the variable name for the dataframe.
        - Don't include any comments in the code.
        - Every line of code must end with `;`.
        - For non-plotting answers, you must use `print()` to print the answer.
        - For plotting answers, one of the folowing options must be used:
            - `st.pyplot(fig)` to display the plot in the Streamlit app.
            - plotly_express to generate a plot and `st.plotly_chart()` to show it.
        
        Here is the question: {question}
        """
        return prompt

    @staticmethod
    @st.cache_data
    def suggest_questions(df_info, language):
        prompt = f"""
        {df_info}

        What questions (exploratory or explanatory) can be asked about this dataset to analyze the data as a whole using {language}? Be as specific as possible based on the data schema above.
        """
        from gpt import OpenAIService

        openai_model = OpenAIService()
        res = openai_model.prompt(prompt)
        return res, prompt


def ask_gpt_sql(df_info, key):
    # -- GPT AI
    # agi = GPTWrapper(df_info=df_info)
    question = st.text_input(
        "Ask a question about the dataset to get a SQL query that answers the question",
        placeholder="How many rows are there in the dataset?",
        key=key,
    )
    if question:
        # res, prompt = agi.ask_sql(df_info, question)
        res, prompt = GPTWrapper().ask_sql(df_info, question)
        # st.markdown(f"```{prompt}```")
        sql_query = res.choices[0].message.content
        st.code(sql_query, language="sql")
        return sql_query

    with st.expander("Example questions"):
        res, prompt = GPTWrapper().suggest_questions(df_info, "SQL")
        suggestions = res.choices[0].message.content
        st.markdown("Here are some example questions:")
        st.markdown(f"```{suggestions}```", unsafe_allow_html=True)


def ask_gpt_python(df_info, key):
    # -- GPT AI

    question = st.text_input(
        "Ask a question about the dataset to get a Python code that answers the question",
        placeholder="How many rows and columns are there in the dataset?",
        key=key,
    )
    if question:
        res, prompt = GPTWrapper().ask_python(df_info, question)
        python_code = res.choices[0].message.content
        st.code(python_code, language="python")

        return python_code

    with st.expander("Example questions"):
        res, prompt = GPTWrapper().suggest_questions(df_info, "Python")
        suggestions = res.choices[0].message.content
        st.markdown("Here are some example questions:")
        st.markdown(suggestions, unsafe_allow_html=True)


if __name__ == "__main__":
    
    with st.expander("DEMO"):
        video_url = 'https://user-images.githubusercontent.com/3298308/233874256-469f1a39-e5c9-4add-9251-86ede0258155.mov'
        st.video(video_url)
        
    show_examples = docs()
    if show_examples:
        display_example_snippets()

    df = read_data()
    display(df)

    # -- data schema
    import io

    sio = io.StringIO()
    df.info(buf=sio)
    df_info = sio.getvalue()
    # st.markdown(f"```{df_info}```", unsafe_allow_html=True)

    # run and execute SQL script
    def sql_cells(df):
        st.write("---")
        st.header("SQL")
        hint = """Type SQL to query the loaded dataset, data is stored in a table named 'df'.
        For example, to select 10 rows:
            SELECT * FROM df LIMIT 10
        Describe the table:
            DESCRIBE TABLE df
        """
        number_cells = st.sidebar.number_input(
            "Number of SQL cells to use", value=1, max_value=40
        )
        for i in range(number_cells):
            key = f"sql{i}"
            col1, col2 = st.columns([2, 1])
            st.markdown("<br>", unsafe_allow_html=True)
            show_panel = (
                False  # col2.checkbox("Show cell config panel", key=f"{i}-sql")
            )

            col1.write(f"> `IN[{i+1}]`")

            # -- GPT AI
            query = ask_gpt_sql(df_info, key=f"{key}-gpt")
            content = None
            if query and st.button("Run the generated code", key=f"{key}-use-sql"):
                content = query

            sql = code_editor(
                "sql",
                hint,
                show_panel=show_panel,
                key=key,
                content=content if content else None,
            )
            if sql:
                st.code(sql, language="sql")
                st.write(f"`OUT[{i+1}]`")
                res = query_data(sql, df)
                display_results(sql, res, f"{key}{sql}")

    # run and dexectue python script
    def python_cells():
        st.write("---")
        st.markdown("### Python")
        hint = """Type Python command (one-liner) to execute or manipulate the dataframe e.g. `df.sample(7)`. By default, results are rendered using `st.write()`.
        πŸ“Š Visulaization example: from "movies" dataset, plot average rating by genre:
            st.line_chart(df.groupby("Genre")[["RottenTomatoes", "AudienceScore"]].mean())
        πŸ—Ί Maps example: show the top 10 populated cities in the world on map (from "Cities Population" dataset)
            st.map(df.sort_values(by='population', ascending=False)[:10])

        NOTE: for multi-lines, a semi-colon can be used to end each line e.g.
                print("first line");
                print("second line);
        """
        hint = """Type Python code here (use semicolons to end each line)"""
        help = """
        For multiple lines, use semicolons e.g.

        ```python

        fig, ax = plt.subplots();
        ax.hist(df[[col1, col2]]);
        st.pyplot(fig);
        ```
        or

        ```python
        groups = [group for _, group in df.groupby('class')];
        for i in range(3):
            st.write(groups[i]['name'].iloc[0])
            st.bar_chart(groups[i].mean())
        ```
        """
        number_cells = st.sidebar.number_input(
            "Number of Python cells to use",
            value=1,
            max_value=40,
            min_value=1,
            help=help,
        )
        for i in range(number_cells):
            # st.markdown("<br><br><br>", unsafe_allow_html=True)
            col1, col2 = st.columns([2, 1])
            # col1.write(f"> `IN[{i+1}]`")
            show_panel = (
                False  # col2.checkbox("Show cell config panel", key=f"panel{i}")
            )

            # -- GPT AI
            query = ask_gpt_python(df_info, key=f"{i}-gpt")
            content = None
            if query and st.checkbox("Run the generated code", key=f"{i}-use-python"):
                content = query
            user_script = code_editor(
                "python",
                hint,
                show_panel=show_panel,
                key=i,
                content=content if content else None,
            )
            if user_script:
                df.rename(
                    columns={"lng": "lon"}, inplace=True
                )  # hot-fix for "World Population" dataset
                st.write(f"> `IN[{i+1}]`")
                st.code(user_script, language="python")
                st.write(f"> `OUT[{i+1}]`")
                run_python_script(user_script, key=f"{user_script}{i}")

    if st.sidebar.checkbox("Show SQL cells", value=True):
        sql_cells(df)
    if st.sidebar.checkbox("Show Python cells", value=True):
        python_cells()

    st.sidebar.write("---")

    if st.sidebar.checkbox(
        "Generate Data Profile Report",
        help="pandas profiling, generated by [ydata-profiling](https://github.com/ydataai/ydata-profiling)",
    ):
        st.write("---")
        st.header("Data Profiling")
        profile = data_profiler(df)
        st_profile_report(profile)

    st.write("---")