Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -14,7 +14,8 @@ from diffusers import StableDiffusionPipeline
|
|
14 |
tk=os.getenv('ghtoken')
|
15 |
print("ttttt",tk)
|
16 |
model_id = "black-forest-labs/FLUX.1-dev"
|
17 |
-
pipe =DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16,token=tk)
|
|
|
18 |
|
19 |
|
20 |
# # 1. 选择一个基础模型,例如 SD 1.5
|
@@ -77,7 +78,7 @@ with gr.Blocks(title="Ghibli Diffusion Image Transformer") as demo:
|
|
77 |
with gr.Row():
|
78 |
with gr.Column():
|
79 |
input_img = gr.Image(label="Upload Image", type="pil")
|
80 |
-
prompt = gr.Textbox(label="Prompt", value="
|
81 |
strength = gr.Slider(0, 1, value=0.75, step=0.05, label="Strength (How much to transform)")
|
82 |
guidance = gr.Slider(1, 20, value=7.5, step=0.5, label="Guidance Scale")
|
83 |
num_steps = gr.Slider(10, 100, value=50, step=5, label="Inference Steps (Higher = Better Quality, Slower)")
|
|
|
14 |
tk=os.getenv('ghtoken')
|
15 |
print("ttttt",tk)
|
16 |
model_id = "black-forest-labs/FLUX.1-dev"
|
17 |
+
# pipe =DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16,token=tk)
|
18 |
+
pipe =AutoPipelineForImage2Image.from_pretrained(model_id, torch_dtype=torch.bfloat16,token=tk)
|
19 |
|
20 |
|
21 |
# # 1. 选择一个基础模型,例如 SD 1.5
|
|
|
78 |
with gr.Row():
|
79 |
with gr.Column():
|
80 |
input_img = gr.Image(label="Upload Image", type="pil")
|
81 |
+
prompt = gr.Textbox(label="Prompt", value="GHBLI anime style photo")
|
82 |
strength = gr.Slider(0, 1, value=0.75, step=0.05, label="Strength (How much to transform)")
|
83 |
guidance = gr.Slider(1, 20, value=7.5, step=0.5, label="Guidance Scale")
|
84 |
num_steps = gr.Slider(10, 100, value=50, step=5, label="Inference Steps (Higher = Better Quality, Slower)")
|