Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tensorflow as tf
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
@st.cache_resource
|
8 |
+
def load_model():
|
9 |
+
return tf.keras.models.load_model('synthetic_underwater_esrgan.h5')
|
10 |
+
|
11 |
+
model = load_model()
|
12 |
+
st.set_page_config(page_title="🌊 Underwater Image Enhancer", layout="wide")
|
13 |
+
|
14 |
+
st.title("🌊 Deep Sea Image Super Resolution")
|
15 |
+
st.write("Upload blurry underwater images to enhance their quality")
|
16 |
+
|
17 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
|
18 |
+
|
19 |
+
if uploaded_file is not None:
|
20 |
+
col1, col2 = st.columns(2)
|
21 |
+
with col1:
|
22 |
+
st.header("Original Image")
|
23 |
+
image = Image.open(uploaded_file)
|
24 |
+
st.image(image, use_column_width=True)
|
25 |
+
|
26 |
+
if st.button("Enhance Image", type="primary"):
|
27 |
+
with st.spinner("Enhancing image..."):
|
28 |
+
# Convert to numpy array
|
29 |
+
lr_img = np.array(image) / 255.0
|
30 |
+
|
31 |
+
# Predict
|
32 |
+
sr_img = model.predict(np.expand_dims(lr_img, axis=0))[0]
|
33 |
+
sr_img = np.clip(sr_img * 255, 0, 255).astype(np.uint8)
|
34 |
+
|
35 |
+
with col2:
|
36 |
+
st.header("Enhanced Image")
|
37 |
+
st.image(sr_img, use_column_width=True)
|
38 |
+
|
39 |
+
# Download button
|
40 |
+
st.download_button(
|
41 |
+
label="⬇️ Download Enhanced Image",
|
42 |
+
data=cv2.imencode('.png', cv2.cvtColor(sr_img, cv2.COLOR_RGB2BGR))[1].tobytes(),
|
43 |
+
file_name="enhanced.png",
|
44 |
+
mime="image/png"
|
45 |
+
)
|