Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,34 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
|
5 |
-
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
messages.append({"role": "user", "content": f"[SYSTEM] You are ASSISTANT who answer question asked by user in short and concise manner. [USER] {Query}"})
|
12 |
-
|
13 |
-
Response = ""
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
stream=True
|
19 |
-
):
|
20 |
-
token = message.choices[0].delta.content
|
21 |
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
|
|
25 |
def nemo(query):
|
26 |
budget = 3
|
27 |
message = f"""[INST] [SYSTEM] You are a helpful assistant in normal conversation.
|
@@ -54,22 +61,30 @@ Example format:
|
|
54 |
<reflection> [Evaluation of the solution] </reflection>
|
55 |
<reward> [Float between 0.0 and 1.0] </reward> [/INST] [INST] [QUERY] {query} [/INST] [ASSISTANT] """
|
56 |
|
57 |
-
stream = client.text_generation(message, max_new_tokens=4096, stream=True, details=True, return_full_text=False)
|
58 |
output = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
return output
|
63 |
-
|
64 |
-
description="# Chat GO\n### Enter your query and Press enter and get lightning fast response"
|
65 |
|
|
|
66 |
with gr.Blocks() as demo1:
|
67 |
-
gr.Interface(
|
|
|
68 |
with gr.Blocks() as demo2:
|
69 |
-
gr.Interface(
|
70 |
|
|
|
71 |
with gr.Blocks() as demo:
|
72 |
-
gr.TabbedInterface([demo1, demo2]
|
73 |
|
74 |
-
|
|
|
75 |
demo.launch()
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
import gradio as gr
|
4 |
from huggingface_hub import InferenceClient
|
5 |
|
6 |
+
# Retrieve API token from Hugging Face Secrets
|
7 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
8 |
|
9 |
+
# Ensure the token is available
|
10 |
+
if not HF_TOKEN:
|
11 |
+
raise ValueError("Missing Hugging Face API Token! Set 'HF_TOKEN' in Hugging Face Secrets.")
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
# Initialize clients with authentication
|
14 |
+
client_gemma = InferenceClient("google/gemma-1.1-2b-it", token=HF_TOKEN)
|
15 |
+
client_mistral = InferenceClient("mistralai/Mistral-Nemo-Instruct-2407", token=HF_TOKEN)
|
|
|
|
|
|
|
16 |
|
17 |
+
# Function for normal fast responses
|
18 |
+
def models(query):
|
19 |
+
messages = [{"role": "user", "content": f"[SYSTEM] You are an AI assistant. Answer concisely. [USER] {query}"}]
|
20 |
+
|
21 |
+
response = ""
|
22 |
+
try:
|
23 |
+
for message in client_gemma.chat_completion(messages, max_tokens=1024, stream=True):
|
24 |
+
token = message.choices[0].delta.content
|
25 |
+
response += token
|
26 |
+
yield response
|
27 |
+
time.sleep(0.3) # Prevent rate limiting
|
28 |
+
except Exception as e:
|
29 |
+
yield f"Error: {str(e)}"
|
30 |
|
31 |
+
# Function for detailed critical thinking responses
|
32 |
def nemo(query):
|
33 |
budget = 3
|
34 |
message = f"""[INST] [SYSTEM] You are a helpful assistant in normal conversation.
|
|
|
61 |
<reflection> [Evaluation of the solution] </reflection>
|
62 |
<reward> [Float between 0.0 and 1.0] </reward> [/INST] [INST] [QUERY] {query} [/INST] [ASSISTANT] """
|
63 |
|
|
|
64 |
output = ""
|
65 |
+
try:
|
66 |
+
stream = client_mistral.text_generation(message, max_new_tokens=2048, stream=True, details=True, return_full_text=False)
|
67 |
+
for response in stream:
|
68 |
+
output += response.token.text
|
69 |
+
yield output
|
70 |
+
time.sleep(0.3) # Prevent rate limiting
|
71 |
+
except Exception as e:
|
72 |
+
yield f"Error: {str(e)}"
|
73 |
|
74 |
+
# Description for Gradio UI
|
75 |
+
description = "# Chat GO\n### Enter your query and get lightning-fast responses"
|
|
|
|
|
|
|
76 |
|
77 |
+
# Gradio Interfaces
|
78 |
with gr.Blocks() as demo1:
|
79 |
+
gr.Interface(fn=models, inputs=["text"], outputs="text", description=description)
|
80 |
+
|
81 |
with gr.Blocks() as demo2:
|
82 |
+
gr.Interface(fn=nemo, inputs=["text"], outputs="text", description="Critical Thinking Mode", api_name="critical_thinker", concurrency_limit=5)
|
83 |
|
84 |
+
# Create a tabbed interface
|
85 |
with gr.Blocks() as demo:
|
86 |
+
gr.TabbedInterface([demo1, demo2], ["Fast", "Critical"])
|
87 |
|
88 |
+
# Launch the application
|
89 |
+
demo.queue(max_size=100000) # Adjust max queue size
|
90 |
demo.launch()
|