{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 📊 Training Visualization for Faster R-CNN\n", "This notebook helps to visualize the training progress, loss curves, and mAP (Mean Average Precision) scores.\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "ename": "FileNotFoundError", "evalue": "[Errno 2] No such file or directory: 'config.yaml'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[1], line 5\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01mjson\u001b[39;00m\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01myaml\u001b[39;00m\n\u001b[0;32m----> 5\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28;43mopen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mconfig.yaml\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mr\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mas\u001b[39;00m f: \n\u001b[1;32m 6\u001b[0m config \u001b[38;5;241m=\u001b[39m yaml\u001b[38;5;241m.\u001b[39msafe_load(f)\n\u001b[1;32m 8\u001b[0m \u001b[38;5;66;03m# Load training log file\u001b[39;00m\n", "File \u001b[0;32m~/studies/northEastern/Computer Vision/Assigments/objectlocalization/venv/lib/python3.12/site-packages/IPython/core/interactiveshell.py:324\u001b[0m, in \u001b[0;36m_modified_open\u001b[0;34m(file, *args, **kwargs)\u001b[0m\n\u001b[1;32m 317\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m file \u001b[38;5;129;01min\u001b[39;00m {\u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m1\u001b[39m, \u001b[38;5;241m2\u001b[39m}:\n\u001b[1;32m 318\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 319\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mIPython won\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt let you open fd=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mfile\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m by default \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 320\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mas it is likely to crash IPython. If you know what you are doing, \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 321\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124myou can use builtins\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m open.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 322\u001b[0m )\n\u001b[0;32m--> 324\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mio_open\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfile\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'config.yaml'" ] } ], "source": [ "import matplotlib.pyplot as plt\n", "import json\n", "import yaml\n", "\n", "with open(\"config.yaml\", \"r\") as f: \n", " config = yaml.safe_load(f)\n", "\n", "# Load training log file\n", "log_file = config[\"notebooks\"][\"visualization\"]\n", "with open(log_file, 'r') as f:\n", " log_data = json.load(f)\n", "\n", "# Extract loss and mAP values\n", "epochs = list(range(1, len(log_data['loss']) + 1))\n", "loss_values = log_data['loss']\n", "map_values = log_data['mAP']\n", "\n", "# Plot loss curve\n", "plt.figure(figsize=(10, 5))\n", "plt.plot(epochs, loss_values, marker='o', label='Loss')\n", "plt.xlabel('Epochs')\n", "plt.ylabel('Loss')\n", "plt.title('Training Loss Curve')\n", "plt.legend()\n", "plt.show()\n", "\n", "# Plot mAP curve\n", "plt.figure(figsize=(10, 5))\n", "plt.plot(epochs, map_values, marker='o', label='mAP')\n", "plt.xlabel('Epochs')\n", "plt.ylabel('Mean Average Precision (mAP)')\n", "plt.title('mAP Progression Over Epochs')\n", "plt.legend()\n", "plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.2" } }, "nbformat": 4, "nbformat_minor": 4 }