Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import logging | |
import os | |
import base64 | |
import datetime | |
from datetime import datetime | |
import dotenv | |
import pandas as pd | |
import streamlit as st | |
from streamlit_tags import st_tags | |
from PyPDF2 import PdfReader, PdfWriter | |
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry, PatternRecognizer, RecognizerResult | |
from presidio_anonymizer import AnonymizerEngine | |
from presidio_anonymizer.entities import OperatorConfig | |
import tempfile | |
import pytz | |
st.set_page_config(page_title="Presidio PHI De-identification", layout="wide", initial_sidebar_state="expanded", menu_items={"About": "https://microsoft.github.io/presidio/"}) | |
dotenv.load_dotenv() | |
logger = logging.getLogger("presidio-streamlit") | |
def get_timestamp_prefix_old() -> str: | |
"""๐ Stamps time with Central swagger!""" | |
central = pytz.timezone("US/Central") | |
return datetime.now(central).strftime("%I%M%p_%d-%m-%y").upper() | |
def get_timestamp_prefix() -> str: | |
central = pytz.timezone("US/Central") | |
return datetime.datetime.now(central).strftime("%I%M%p_%d-%m-%y").upper() | |
def nlp_engine_and_registry(model_family: str, model_path: str) -> tuple: | |
"""๐ค Sparks NLP models with a wink!""" | |
registry = RecognizerRegistry() | |
registry.load_predefined_recognizers() | |
if model_family.lower() == "flair": | |
from flair.models import SequenceTagger | |
tagger = SequenceTagger.load(model_path) | |
logger.info(f"Flair model loaded: {model_path}") | |
return tagger, registry | |
elif model_family.lower() == "huggingface": | |
from transformers import pipeline | |
nlp = pipeline("ner", model=model_path, tokenizer=model_path) | |
logger.info(f"HuggingFace model loaded: {model_path}") | |
return nlp, registry | |
raise ValueError(f"Model family {model_family} unsupported") | |
def analyzer_engine(model_family: str, model_path: str) -> AnalyzerEngine: | |
"""๐ Unleashes the PHI-hunting beast!""" | |
nlp_engine, registry = nlp_engine_and_registry(model_family, model_path) | |
return AnalyzerEngine(registry=registry) | |
def get_supported_entities(model_family: str, model_path: str) -> list[str]: | |
"""๐ Spills the beans on PHI targets!""" | |
return ["PERSON", "LOCATION", "ORGANIZATION", "DATE_TIME"] if model_family.lower() == "huggingface" else ["PERSON", "LOCATION", "ORGANIZATION"] | |
# Feature Spotlight: ๐ต๏ธโโ๏ธ PHI Hunt Kicks Off! | |
# Models dive into PDFs, sniffing out sensitive bits with ninja vibes! ๐ | |
def analyze(analyzer: AnalyzerEngine, text: str, entities: list[str], language: str, score_threshold: float, return_decision_process: bool, allow_list: list[str], deny_list: list[str]) -> list: | |
"""๐ฆธ Zaps PHI with eagle-eye precision!""" | |
results = analyzer.analyze(text=text, entities=entities, language=language, score_threshold=score_threshold, return_decision_process=return_decision_process) | |
filtered = [] | |
for result in results: | |
snippet = text[result.start:result.end].lower() | |
if any(word.lower() in snippet for word in allow_list): | |
continue | |
if any(word.lower() in snippet for word in deny_list) or not deny_list: | |
filtered.append(result) | |
return filtered | |
def anonymize(text: str, operator: str, analyze_results: list, mask_char: str = "*", number_of_chars: int = 15) -> dict: | |
"""๐ต๏ธโโ๏ธ Hides PHI with a magicianโs flair!""" | |
anonymizer = AnonymizerEngine() | |
config = {"DEFAULT": OperatorConfig(operator, {})} | |
if operator == "mask": | |
config["DEFAULT"] = OperatorConfig(operator, {"masking_char": mask_char, "chars_to_mask": number_of_chars}) | |
return anonymizer.anonymize(text=text, analyzer_results=analyze_results, operators=config) | |
def create_ad_hoc_deny_list_recognizer(deny_list: list[str] = None) -> PatternRecognizer: | |
"""๐จ Sets traps for sneaky PHI rogues!""" | |
return None if not deny_list else PatternRecognizer(supported_entity="GENERIC_PII", deny_list=deny_list) | |
def save_pdf(pdf_input) -> str: | |
"""๐พ Stashes PDFs in a temp vault!""" | |
if pdf_input.size > 200 * 1024 * 1024: | |
logger.error(f"Upload rejected: {pdf_input.name} exceeds 200MB") | |
st.error("PDF exceeds 200MB limit") | |
raise ValueError("PDF too big") | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf", dir="/tmp") as tmp: | |
tmp.write(pdf_input.read()) | |
logger.info(f"Uploaded PDF to {tmp.name}, size: {pdf_input.size} bytes") | |
return tmp.name | |
# Feature Spotlight: ๐ PDF Wizardry Unleashed! | |
# Uploads zip through, PHI vanishes, and out pops a safe PDF with timestamp pizzazz! โจ | |
def read_pdf(pdf_path: str) -> str: | |
"""๐ Gobbles PDF text like candy!""" | |
reader = PdfReader(pdf_path) | |
text = "".join(page.extract_text() or "" + "\n" for page in reader.pages) | |
logger.info(f"Extracted {len(text)} chars from {pdf_path}") | |
return text | |
def create_pdf(text: str, input_path: str, output_filename: str) -> str: | |
"""๐จ๏ธ Spins a new PDF with PHI-proof charm!""" | |
reader = PdfReader(input_path) | |
writer = PdfWriter() | |
for page in reader.pages: | |
writer.add_page(page) | |
with open(output_filename, "wb") as f: | |
writer.write(f) | |
logger.info(f"Created PDF: {output_filename}") | |
return output_filename | |
# Sidebar | |
st.sidebar.header("PHI De-identification with Presidio") | |
model_list = [ | |
("flair/ner-english-large", "https://huggingface.co/flair/ner-english-large"), | |
("HuggingFace/obi/deid_roberta_i2b2", "https://huggingface.co/obi/deid_roberta_i2b2"), | |
("HuggingFace/StanfordAIMI/stanford-deidentifier-base", "https://huggingface.co/StanfordAIMI/stanford-deidentifier-base"), | |
] | |
st_model = st.sidebar.selectbox("NER model", [m[0] for m in model_list], 0) | |
st.sidebar.markdown(f"[View model]({next(url for m, url in model_list if m == st_model)})") | |
st_model_package = st_model.split("/")[0] | |
st_model = st_model if st_model_package.lower() != "huggingface" else "/".join(st_model.split("/")[1:]) | |
analyzer_params = (st_model_package, st_model) | |
st.sidebar.warning("Models may snooze briefly!") | |
st_operator = st.sidebar.selectbox("De-id approach", ["replace", "redact", "mask"], 0) | |
st_threshold = st.sidebar.slider("Threshold", 0.0, 1.0, 0.35) | |
st_return_decision_process = st.sidebar.checkbox("Show analysis", False) | |
with st.sidebar.expander("Allow/Deny lists"): | |
st_allow_list = st_tags(label="Allowlist", text="Add word, hit enter") | |
st_deny_list = st_tags(label="Denylist", text="Add word, hit enter") | |
# Main | |
col1, col2 = st.columns(2) | |
with col1: | |
st.subheader("Input") | |
uploaded_file = st.file_uploader("Upload PDF", type=["pdf"], help="Max 200MB") | |
if uploaded_file: | |
try: | |
logger.info(f"Upload: {uploaded_file.name}, size: {uploaded_file.size} bytes") | |
pdf_path = save_pdf(uploaded_file) | |
text = read_pdf(pdf_path) | |
if not text: | |
st.error("No text extracted") | |
raise ValueError("Empty PDF") | |
analyzer = analyzer_engine(*analyzer_params) | |
st_analyze_results = analyze( | |
analyzer=analyzer, | |
text=text, | |
entities=get_supported_entities(*analyzer_params), | |
language="en", | |
score_threshold=st_threshold, | |
return_decision_process=st_return_decision_process, | |
allow_list=st_allow_list, | |
deny_list=st_deny_list, | |
) | |
phi_types = set(res.entity_type for res in st_analyze_results) | |
if phi_types: | |
st.success(f"Zapped PHI: {', '.join(phi_types)}") | |
else: | |
st.info("No PHI found") | |
anonymized_result = anonymize(text=text, operator=st_operator, analyze_results=st_analyze_results) | |
timestamp = get_timestamp_prefix() | |
output_filename = f"{timestamp}_{uploaded_file.name}" | |
create_pdf(anonymized_result.text, pdf_path, output_filename) | |
with open(output_filename, "rb") as f: | |
b64 = base64.b64encode(f.read()).decode() | |
st.markdown(f'<a href="data:application/pdf;base64,{b64}" download="{output_filename}">Download de-identified PDF</a>', unsafe_allow_html=True) | |
with col2: | |
st.subheader("Findings") | |
if st_analyze_results: | |
df = pd.DataFrame([r.to_dict() for r in st_analyze_results]) | |
df["text"] = [text[r.start:r.end] for r in st_analyze_results] | |
df_subset = df[["entity_type", "text", "start", "end", "score"]].rename( | |
{"entity_type": "Type", "text": "Text", "start": "Start", "end": "End", "score": "Confidence"}, axis=1 | |
) | |
if st_return_decision_process: | |
df_subset = pd.concat([df_subset, pd.DataFrame([r.analysis_explanation.to_dict() for r in st_analyze_results])], axis=1) | |
st.dataframe(df_subset.reset_index(drop=True), use_container_width=True) | |
else: | |
st.text("No findings") | |
os.remove(pdf_path) | |
except Exception as e: | |
st.error(f"Oops: {str(e)}") | |
logger.error(f"Error: {str(e)}") |