awacke1's picture
Update app.py
be8431a verified
import logging
import os
import base64
import datetime
from datetime import datetime
import dotenv
import pandas as pd
import streamlit as st
from streamlit_tags import st_tags
from PyPDF2 import PdfReader, PdfWriter
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry, PatternRecognizer, RecognizerResult
from presidio_anonymizer import AnonymizerEngine
from presidio_anonymizer.entities import OperatorConfig
import tempfile
import pytz
st.set_page_config(page_title="Presidio PHI De-identification", layout="wide", initial_sidebar_state="expanded", menu_items={"About": "https://microsoft.github.io/presidio/"})
dotenv.load_dotenv()
logger = logging.getLogger("presidio-streamlit")
def get_timestamp_prefix_old() -> str:
"""๐Ÿ•’ Stamps time with Central swagger!"""
central = pytz.timezone("US/Central")
return datetime.now(central).strftime("%I%M%p_%d-%m-%y").upper()
def get_timestamp_prefix() -> str:
central = pytz.timezone("US/Central")
return datetime.datetime.now(central).strftime("%I%M%p_%d-%m-%y").upper()
def nlp_engine_and_registry(model_family: str, model_path: str) -> tuple:
"""๐Ÿค– Sparks NLP models with a wink!"""
registry = RecognizerRegistry()
registry.load_predefined_recognizers()
if model_family.lower() == "flair":
from flair.models import SequenceTagger
tagger = SequenceTagger.load(model_path)
logger.info(f"Flair model loaded: {model_path}")
return tagger, registry
elif model_family.lower() == "huggingface":
from transformers import pipeline
nlp = pipeline("ner", model=model_path, tokenizer=model_path)
logger.info(f"HuggingFace model loaded: {model_path}")
return nlp, registry
raise ValueError(f"Model family {model_family} unsupported")
def analyzer_engine(model_family: str, model_path: str) -> AnalyzerEngine:
"""๐Ÿ” Unleashes the PHI-hunting beast!"""
nlp_engine, registry = nlp_engine_and_registry(model_family, model_path)
return AnalyzerEngine(registry=registry)
def get_supported_entities(model_family: str, model_path: str) -> list[str]:
"""๐Ÿ“‹ Spills the beans on PHI targets!"""
return ["PERSON", "LOCATION", "ORGANIZATION", "DATE_TIME"] if model_family.lower() == "huggingface" else ["PERSON", "LOCATION", "ORGANIZATION"]
# Feature Spotlight: ๐Ÿ•ต๏ธโ€โ™‚๏ธ PHI Hunt Kicks Off!
# Models dive into PDFs, sniffing out sensitive bits with ninja vibes! ๐Ÿ˜Ž
def analyze(analyzer: AnalyzerEngine, text: str, entities: list[str], language: str, score_threshold: float, return_decision_process: bool, allow_list: list[str], deny_list: list[str]) -> list:
"""๐Ÿฆธ Zaps PHI with eagle-eye precision!"""
results = analyzer.analyze(text=text, entities=entities, language=language, score_threshold=score_threshold, return_decision_process=return_decision_process)
filtered = []
for result in results:
snippet = text[result.start:result.end].lower()
if any(word.lower() in snippet for word in allow_list):
continue
if any(word.lower() in snippet for word in deny_list) or not deny_list:
filtered.append(result)
return filtered
def anonymize(text: str, operator: str, analyze_results: list, mask_char: str = "*", number_of_chars: int = 15) -> dict:
"""๐Ÿ•ต๏ธโ€โ™€๏ธ Hides PHI with a magicianโ€™s flair!"""
anonymizer = AnonymizerEngine()
config = {"DEFAULT": OperatorConfig(operator, {})}
if operator == "mask":
config["DEFAULT"] = OperatorConfig(operator, {"masking_char": mask_char, "chars_to_mask": number_of_chars})
return anonymizer.anonymize(text=text, analyzer_results=analyze_results, operators=config)
def create_ad_hoc_deny_list_recognizer(deny_list: list[str] = None) -> PatternRecognizer:
"""๐Ÿšจ Sets traps for sneaky PHI rogues!"""
return None if not deny_list else PatternRecognizer(supported_entity="GENERIC_PII", deny_list=deny_list)
def save_pdf(pdf_input) -> str:
"""๐Ÿ’พ Stashes PDFs in a temp vault!"""
if pdf_input.size > 200 * 1024 * 1024:
logger.error(f"Upload rejected: {pdf_input.name} exceeds 200MB")
st.error("PDF exceeds 200MB limit")
raise ValueError("PDF too big")
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf", dir="/tmp") as tmp:
tmp.write(pdf_input.read())
logger.info(f"Uploaded PDF to {tmp.name}, size: {pdf_input.size} bytes")
return tmp.name
# Feature Spotlight: ๐Ÿ“„ PDF Wizardry Unleashed!
# Uploads zip through, PHI vanishes, and out pops a safe PDF with timestamp pizzazz! โœจ
def read_pdf(pdf_path: str) -> str:
"""๐Ÿ“– Gobbles PDF text like candy!"""
reader = PdfReader(pdf_path)
text = "".join(page.extract_text() or "" + "\n" for page in reader.pages)
logger.info(f"Extracted {len(text)} chars from {pdf_path}")
return text
def create_pdf(text: str, input_path: str, output_filename: str) -> str:
"""๐Ÿ–จ๏ธ Spins a new PDF with PHI-proof charm!"""
reader = PdfReader(input_path)
writer = PdfWriter()
for page in reader.pages:
writer.add_page(page)
with open(output_filename, "wb") as f:
writer.write(f)
logger.info(f"Created PDF: {output_filename}")
return output_filename
# Sidebar
st.sidebar.header("PHI De-identification with Presidio")
model_list = [
("flair/ner-english-large", "https://huggingface.co/flair/ner-english-large"),
("HuggingFace/obi/deid_roberta_i2b2", "https://huggingface.co/obi/deid_roberta_i2b2"),
("HuggingFace/StanfordAIMI/stanford-deidentifier-base", "https://huggingface.co/StanfordAIMI/stanford-deidentifier-base"),
]
st_model = st.sidebar.selectbox("NER model", [m[0] for m in model_list], 0)
st.sidebar.markdown(f"[View model]({next(url for m, url in model_list if m == st_model)})")
st_model_package = st_model.split("/")[0]
st_model = st_model if st_model_package.lower() != "huggingface" else "/".join(st_model.split("/")[1:])
analyzer_params = (st_model_package, st_model)
st.sidebar.warning("Models may snooze briefly!")
st_operator = st.sidebar.selectbox("De-id approach", ["replace", "redact", "mask"], 0)
st_threshold = st.sidebar.slider("Threshold", 0.0, 1.0, 0.35)
st_return_decision_process = st.sidebar.checkbox("Show analysis", False)
with st.sidebar.expander("Allow/Deny lists"):
st_allow_list = st_tags(label="Allowlist", text="Add word, hit enter")
st_deny_list = st_tags(label="Denylist", text="Add word, hit enter")
# Main
col1, col2 = st.columns(2)
with col1:
st.subheader("Input")
uploaded_file = st.file_uploader("Upload PDF", type=["pdf"], help="Max 200MB")
if uploaded_file:
try:
logger.info(f"Upload: {uploaded_file.name}, size: {uploaded_file.size} bytes")
pdf_path = save_pdf(uploaded_file)
text = read_pdf(pdf_path)
if not text:
st.error("No text extracted")
raise ValueError("Empty PDF")
analyzer = analyzer_engine(*analyzer_params)
st_analyze_results = analyze(
analyzer=analyzer,
text=text,
entities=get_supported_entities(*analyzer_params),
language="en",
score_threshold=st_threshold,
return_decision_process=st_return_decision_process,
allow_list=st_allow_list,
deny_list=st_deny_list,
)
phi_types = set(res.entity_type for res in st_analyze_results)
if phi_types:
st.success(f"Zapped PHI: {', '.join(phi_types)}")
else:
st.info("No PHI found")
anonymized_result = anonymize(text=text, operator=st_operator, analyze_results=st_analyze_results)
timestamp = get_timestamp_prefix()
output_filename = f"{timestamp}_{uploaded_file.name}"
create_pdf(anonymized_result.text, pdf_path, output_filename)
with open(output_filename, "rb") as f:
b64 = base64.b64encode(f.read()).decode()
st.markdown(f'<a href="data:application/pdf;base64,{b64}" download="{output_filename}">Download de-identified PDF</a>', unsafe_allow_html=True)
with col2:
st.subheader("Findings")
if st_analyze_results:
df = pd.DataFrame([r.to_dict() for r in st_analyze_results])
df["text"] = [text[r.start:r.end] for r in st_analyze_results]
df_subset = df[["entity_type", "text", "start", "end", "score"]].rename(
{"entity_type": "Type", "text": "Text", "start": "Start", "end": "End", "score": "Confidence"}, axis=1
)
if st_return_decision_process:
df_subset = pd.concat([df_subset, pd.DataFrame([r.analysis_explanation.to_dict() for r in st_analyze_results])], axis=1)
st.dataframe(df_subset.reset_index(drop=True), use_container_width=True)
else:
st.text("No findings")
os.remove(pdf_path)
except Exception as e:
st.error(f"Oops: {str(e)}")
logger.error(f"Error: {str(e)}")