File size: 2,875 Bytes
3501f33
 
 
 
 
 
 
 
 
 
 
 
37d4199
3501f33
 
e6f66da
3501f33
e6f66da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3501f33
 
 
 
 
 
 
 
 
 
 
 
 
e6f66da
 
1f0abbb
e6f66da
 
 
 
 
1f0abbb
e6f66da
 
 
 
 
1f0abbb
e6f66da
 
 
 
 
1f0abbb
e6f66da
 
 
 
 
3501f33
c431a8c
e6f66da
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import streamlit as st
from graphviz import Digraph

# Define the emoji to use for the swim lanes
SWIM_LANES = {
    "Data Pipelines": "๐Ÿ”",
    "Build and Train Models": "๐Ÿงช",
    "Deploy and Predict": "๐Ÿš€"
}

# Define the graph structure
graph = Digraph()
graph.attr(rankdir="TB") # Top to Bottom or LR Left to Right
graph.attr(fontsize="20")
graph.attr(compound="true")
graph.attr(nodesep="0.5")

# Define the nodes
graph.node("๐Ÿ“Š Data Collection")
graph.node("๐Ÿงน Data Cleaning")
graph.node("๐Ÿ”ง Data Transformation")
graph.node("๐Ÿ”Ž Feature Engineering")
graph.node("โš™๏ธ Model Selection")
graph.node("๐ŸŽ“ Model Training")
graph.node("๐Ÿšข Model Deployment")
graph.node("๐Ÿ“ก Model Serving")
graph.node("๐Ÿ”ฎ Predictions")
graph.node("๐Ÿ‘ Feedback Collection")
graph.node("๐Ÿค” Feedback Processing")
graph.node("โœ๏ธ Model Updating")

# Add the edges
graph.edge("๐Ÿ“Š Data Collection", "๐Ÿงน Data Cleaning")
graph.edge("๐Ÿงน Data Cleaning", "๐Ÿ”ง Data Transformation")
graph.edge("๐Ÿ”ง Data Transformation", "๐Ÿ”Ž Feature Engineering")
graph.edge("๐Ÿ”Ž Feature Engineering", "โš™๏ธ Model Selection")
graph.edge("โš™๏ธ Model Selection", "๐ŸŽ“ Model Training")
graph.edge("๐ŸŽ“ Model Training", "๐Ÿšข Model Deployment")
graph.edge("๐Ÿšข Model Deployment", "๐Ÿ“ก Model Serving")
graph.edge("๐Ÿ“ก Model Serving", "๐Ÿ”ฎ Predictions")
graph.edge("๐Ÿ”ฎ Predictions", "๐Ÿ‘ Feedback Collection")
graph.edge("๐Ÿ‘ Feedback Collection", "๐Ÿค” Feedback Processing")
graph.edge("๐Ÿค” Feedback Processing", "โœ๏ธ Model Updating")
graph.edge("โœ๏ธ Model Updating", "๐ŸŽ“ Model Training")

# Add the swim lanes
with graph.subgraph(name="cluster_0") as c:
    c.attr(rank="1")
    c.attr(label=SWIM_LANES["Data Pipelines"])
    c.edge("๐Ÿ“Š Data Collection", "๐Ÿงน Data Cleaning", style="invis")
    c.edge("๐Ÿงน Data Cleaning", "๐Ÿ”ง Data Transformation", style="invis")

with graph.subgraph(name="cluster_1") as c:
    c.attr(rank="2")
    c.attr(label=SWIM_LANES["Build and Train Models"])
    c.edge("๐Ÿ”Ž Feature Engineering", "โš™๏ธ Model Selection", style="invis")
    c.edge("โš™๏ธ Model Selection", "๐ŸŽ“ Model Training", style="invis")

with graph.subgraph(name="cluster_2") as c:
    c.attr(rank="3")
    c.attr(label=SWIM_LANES["Deploy and Predict"])
    c.edge("๐Ÿšข Model Deployment", "๐Ÿ“ก Model Serving", style="invis")
    c.edge("๐Ÿ“ก Model Serving", "๐Ÿ”ฎ Predictions", style="invis")

with graph.subgraph(name="cluster_3") as c:
    c.attr(rank="4")
    c.attr(label="Reinforcement Learning Human Feedback")
    c.edge("๐Ÿ”ฎ Predictions", "๐Ÿ‘ Feedback Collection", style="invis")
    c.edge("๐Ÿ‘ Feedback Collection", "๐Ÿค” Feedback Processing", style="invis")
    c.edge("๐Ÿค” Feedback Processing", "โœ๏ธ Model Updating", style="invis")

# Render the graph in Streamlit
# st.graphviz_chart(graph.source)
st.graphviz_chart(graph.source)