Spaces:
Sleeping
Sleeping
File size: 10,513 Bytes
10a3b26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
# Import necessary libraries
import streamlit as st
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import linear_kernel, cosine_similarity
import nltk
from nltk.corpus import stopwords
from nltk import FreqDist
import re
import os
import base64
from graphviz import Digraph
from io import BytesIO
import networkx as nx
import matplotlib.pyplot as plt
# Set page configuration with a title and favicon
st.set_page_config(
page_title="๐บTranscript๐EDA๐NLTK",
page_icon="๐ ",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a bug': "https://huggingface.co/awacke1",
'About': "https://huggingface.co/awacke1"
}
)
st.markdown('''
1. ๐ **Transcript Insights Using Exploratory Data Analysis (EDA)** ๐ - Unveil hidden patterns ๐ต๏ธโโ๏ธ and insights ๐ง in your transcripts. ๐.
2. ๐ **Natural Language Toolkit (NLTK)** ๐ ๏ธ:- your compass ๐งญ in the vast landscape of NLP.
3. ๐บ **Transcript Analysis** ๐:Speech recognition ๐๏ธ and thematic extraction ๐, audiovisual content to actionable insights ๐.
''')
# Download NLTK resources
nltk.download('punkt')
nltk.download('stopwords')
def remove_timestamps(text):
return re.sub(r'\d{1,2}:\d{2}\n.*\n', '', text)
def extract_high_information_words(text, top_n=10):
words = nltk.word_tokenize(text)
words = [word.lower() for word in words if word.isalpha()]
stop_words = set(stopwords.words('english'))
filtered_words = [word for word in words if word not in stop_words]
freq_dist = FreqDist(filtered_words)
return [word for word, _ in freq_dist.most_common(top_n)]
def create_relationship_graph(words):
graph = Digraph()
for index, word in enumerate(words):
graph.node(str(index), word)
if index > 0:
graph.edge(str(index - 1), str(index), label=word) # Add word as edge label
return graph
def display_relationship_graph(words):
graph = create_relationship_graph(words)
st.graphviz_chart(graph)
def extract_context_words(text, high_information_words):
words = nltk.word_tokenize(text)
context_words = []
for index, word in enumerate(words):
if word.lower() in high_information_words:
before_word = words[index - 1] if index > 0 else None
after_word = words[index + 1] if index < len(words) - 1 else None
context_words.append((before_word, word, after_word))
return context_words
def create_context_graph(context_words):
graph = Digraph()
for index, (before_word, high_info_word, after_word) in enumerate(context_words):
if before_word:
graph.node(f'before{index}', before_word, shape='box')
graph.node(f'high{index}', high_info_word, shape='ellipse')
if after_word:
graph.node(f'after{index}', after_word, shape='diamond')
if before_word:
graph.edge(f'before{index}', f'high{index}', label=before_word) # Add before_word as edge label
if after_word:
graph.edge(f'high{index}', f'after{index}', label=after_word) # Add after_word as edge label
return graph
def display_context_graph(context_words):
graph = create_context_graph(context_words)
st.graphviz_chart(graph)
def display_context_table(context_words):
table = "| Before | High Info Word | After |\n|--------|----------------|-------|\n"
for before, high, after in context_words:
table += f"| {before if before else ''} | {high} | {after if after else ''} |\n"
st.markdown(table)
def load_example_files():
# Exclude specific files
excluded_files = {'freeze.txt', 'requirements.txt', 'packages.txt', 'pre-requirements.txt'}
# List all .txt files excluding the ones in excluded_files
example_files = [f for f in os.listdir() if f.endswith('.txt') and f not in excluded_files]
# Check if there are any files to select from
if example_files:
selected_file = st.selectbox("๐ Select an example file:", example_files)
if st.button(f"๐ Load {selected_file}"):
with open(selected_file, 'r', encoding="utf-8") as file:
return file.read()
else:
st.write("No suitable example files found.")
return None
def cluster_sentences(sentences, num_clusters):
# Filter sentences with length over 10 characters
sentences = [sentence for sentence in sentences if len(sentence) > 10]
# Check if the number of sentences is less than the desired number of clusters
if len(sentences) < num_clusters:
# If so, adjust the number of clusters to match the number of sentences
num_clusters = len(sentences)
# Vectorize the sentences
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(sentences)
# Perform k-means clustering
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
kmeans.fit(X)
# Calculate the centroid of each cluster
cluster_centers = kmeans.cluster_centers_
# Group sentences by cluster and calculate similarity to centroid
clustered_sentences = [[] for _ in range(num_clusters)]
for i, label in enumerate(kmeans.labels_):
similarity = linear_kernel(cluster_centers[label:label+1], X[i:i+1]).flatten()[0]
clustered_sentences[label].append((similarity, sentences[i]))
# Order sentences within each cluster based on their similarity to the centroid
for cluster in clustered_sentences:
cluster.sort(reverse=True) # Sort based on similarity (descending order)
# Return the ordered clustered sentences without similarity scores for display
return [[sentence for _, sentence in cluster] for cluster in clustered_sentences]
def get_text_file_download_link(text_to_download, filename='Output.txt', button_label="๐พ Save"):
buffer = BytesIO()
buffer.write(text_to_download.encode())
buffer.seek(0)
b64 = base64.b64encode(buffer.read()).decode()
href = f'<a href="data:file/txt;base64,{b64}" download="{filename}" style="margin-top:20px;">{button_label}</a>'
return href
def get_high_info_words_per_cluster(cluster_sentences, num_words=5):
cluster_high_info_words = []
for cluster in cluster_sentences:
cluster_text = " ".join(cluster)
high_info_words = extract_high_information_words(cluster_text, num_words)
cluster_high_info_words.append(high_info_words)
return cluster_high_info_words
def plot_cluster_words(cluster_sentences):
for i, cluster in enumerate(cluster_sentences):
cluster_text = " ".join(cluster)
words = re.findall(r'\b[a-z]{4,}\b', cluster_text)
word_freq = FreqDist(words)
top_words = [word for word, _ in word_freq.most_common(20)]
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(top_words)
word_vectors = X.toarray()
similarity_matrix = cosine_similarity(word_vectors)
G = nx.from_numpy_array(similarity_matrix)
pos = nx.spring_layout(G, k=0.5)
plt.figure(figsize=(8, 6))
nx.draw_networkx(G, pos, node_size=500, font_size=12, font_weight='bold', with_labels=True, labels={i: word for i, word in enumerate(top_words)}, node_color='skyblue', edge_color='gray') # Add word labels to nodes
plt.axis('off')
plt.title(f"Cluster {i+1} Word Arrangement")
st.pyplot(plt)
st.markdown(f"**Cluster {i+1} Details:**")
st.markdown(f"Top Words: {', '.join(top_words)}")
st.markdown(f"Number of Sentences: {len(cluster)}")
st.markdown("---")
# Main code for UI
uploaded_file = st.file_uploader("๐ Choose a .txt file", type=['txt'])
example_text = load_example_files()
if example_text:
file_text = example_text
elif uploaded_file:
file_text = uploaded_file.read().decode("utf-8")
else:
file_text = ""
if file_text:
text_without_timestamps = remove_timestamps(file_text)
top_words = extract_high_information_words(text_without_timestamps, 10)
with st.expander("๐ Top 10 High Information Words"):
st.write(top_words)
with st.expander("๐ Relationship Graph"):
display_relationship_graph(top_words)
context_words = extract_context_words(text_without_timestamps, top_words)
with st.expander("๐ Context Graph"):
display_context_graph(context_words)
with st.expander("๐ Context Table"):
display_context_table(context_words)
#with st.expander("๐ Sentence Clustering", expanded=True):
sentences = [line.strip() for line in file_text.split('\n') if len(line.strip()) > 10]
num_sentences = len(sentences)
st.write(f"Total Sentences: {num_sentences}")
num_clusters = st.slider("Number of Clusters", min_value=2, max_value=10, value=5)
clustered_sentences = cluster_sentences(sentences, num_clusters)
col1, col2 = st.columns(2)
with col1:
st.subheader("Original Text")
original_text = "\n".join(sentences)
st.text_area("Original Sentences", value=original_text, height=400)
with col2:
st.subheader("Clustered Text")
clusters = ""
clustered_text = ""
cluster_high_info_words = get_high_info_words_per_cluster(clustered_sentences)
for i, cluster in enumerate(clustered_sentences):
cluster_text = "\n".join(cluster)
high_info_words = ", ".join(cluster_high_info_words[i])
clusters += f"Cluster {i+1} (High Info Words: {high_info_words})\n"
clustered_text += f"Cluster {i+1} (High Info Words: {high_info_words}):\n{cluster_text}\n\n"
st.text_area("Clusters", value=clusters, height=200)
st.text_area("Clustered Sentences", value=clustered_text, height=200)
# Verify that all sentences are accounted for in the clustered output
clustered_sentences_flat = [sentence for cluster in clustered_sentences for sentence in cluster]
if set(sentences) == set(clustered_sentences_flat):
st.write("โ
All sentences are accounted for in the clustered output.")
else:
st.write("โ Some sentences are missing in the clustered output.")
plot_cluster_words(clustered_sentences)
st.markdown("For more information and updates, visit our [help page](https://huggingface.co/awacke1).") |