File size: 10,174 Bytes
069bed5
 
 
 
 
 
 
 
 
3f1ac1e
069bed5
 
 
 
 
 
3f1ac1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96afb92
3f1ac1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96afb92
3f1ac1e
96afb92
3f1ac1e
 
 
 
 
 
 
 
 
 
 
069bed5
 
 
 
 
 
 
 
 
 
3f1ac1e
 
 
 
 
 
 
 
 
 
 
 
 
 
96afb92
3f1ac1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96afb92
3f1ac1e
 
 
 
 
 
 
 
 
069bed5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96afb92
 
 
868ef7a
3f1ac1e
 
 
 
96afb92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f1ac1e
069bed5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import streamlit as st
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import linear_kernel, cosine_similarity
import nltk
from nltk.corpus import stopwords
from nltk import FreqDist
import re
import os
import base64
from graphviz import Digraph
from io import BytesIO
import networkx as nx
import matplotlib.pyplot as plt

st.set_page_config(
    page_title="๐Ÿ“บTranscript๐Ÿ“œEDA๐Ÿ”NLTK",
    page_icon="๐ŸŒ ",
    layout="wide",
    initial_sidebar_state="expanded",
    menu_items={
        'Get Help': 'https://huggingface.co/awacke1',
        'Report a bug': "https://huggingface.co/awacke1",
        'About': "https://huggingface.co/awacke1"
    }
)

st.markdown('''
1. ๐Ÿ” **Transcript Insights Using Exploratory Data Analysis (EDA)** ๐Ÿ“Š - Unveil hidden patterns ๐Ÿ•ต๏ธโ€โ™‚๏ธ and insights ๐Ÿง  in your transcripts. ๐Ÿ†.
2. ๐Ÿ“œ **Natural Language Toolkit (NLTK)** ๐Ÿ› ๏ธ:- your compass ๐Ÿงญ in the vast landscape of NLP.
3. ๐Ÿ“บ **Transcript Analysis** ๐Ÿ“ˆ:Speech recognition ๐ŸŽ™๏ธ and thematic extraction ๐ŸŒ, audiovisual content to actionable insights ๐Ÿ”‘.
''')

nltk.download('punkt')
nltk.download('stopwords')

def remove_timestamps(text):
    return re.sub(r'\d{1,2}:\d{2}\n.*\n', '', text)

def extract_high_information_words(text, top_n=10):
    words = nltk.word_tokenize(text)
    words = [word.lower() for word in words if word.isalpha()]
    stop_words = set(stopwords.words('english'))
    filtered_words = [word for word in words if word not in stop_words]
    freq_dist = FreqDist(filtered_words)
    return [word for word, _ in freq_dist.most_common(top_n)]

def create_relationship_graph(words):
    graph = Digraph()
    for index, word in enumerate(words):
        graph.node(str(index), word)
        if index > 0:
            graph.edge(str(index - 1), str(index), label=word)
    return graph

def display_relationship_graph(words):
    graph = create_relationship_graph(words)
    st.graphviz_chart(graph)

def extract_context_words(text, high_information_words):
    words = nltk.word_tokenize(text)
    context_words = []
    for index, word in enumerate(words):
        if word.lower() in high_information_words:
            before_word = words[index - 1] if index > 0 else None
            after_word = words[index + 1] if index < len(words) - 1 else None
            context_words.append((before_word, word, after_word))
    return context_words

def create_context_graph(context_words):
    graph = Digraph()
    for index, (before_word, high_info_word, after_word) in enumerate(context_words):
        if before_word:
            graph.node(f'before{index}', before_word, shape='box')
        graph.node(f'high{index}', high_info_word, shape='ellipse')
        if after_word:
            graph.node(f'after{index}', after_word, shape='diamond')
        if before_word:
            graph.edge(f'before{index}', f'high{index}', label=before_word)
        if after_word:
            graph.edge(f'high{index}', f'after{index}', label=after_word)
    return graph

def display_context_graph(context_words):
    graph = create_context_graph(context_words)
    st.graphviz_chart(graph)

def display_context_table(context_words):
    table = "| Before | High Info Word | After |\n|--------|----------------|-------|\n"
    for before, high, after in context_words:
        table += f"| {before if before else ''} | {high} | {after if after else ''} |\n"
    st.markdown(table)

def get_txt_files():
    excluded_files = {'freeze.txt', 'requirements.txt', 'packages.txt', 'pre-requirements.txt'}
    txt_files = [f for f in os.listdir() if f.endswith('.txt') and f not in excluded_files]
    df = pd.DataFrame({
        'File Name': txt_files,
        'Full Path': [os.path.abspath(f) for f in txt_files]
    })
    return df

def cluster_sentences(sentences, num_clusters):
    sentences = [sentence for sentence in sentences if len(sentence) > 10]
    if len(sentences) < num_clusters:
        num_clusters = len(sentences)
    vectorizer = TfidfVectorizer()
    X = vectorizer.fit_transform(sentences)
    kmeans = KMeans(n_clusters=num_clusters, random_state=42)
    kmeans.fit(X)
    cluster_centers = kmeans.cluster_centers_
    clustered_sentences = [[] for _ in range(num_clusters)]
    for i, label in enumerate(kmeans.labels_):
        similarity = linear_kernel(cluster_centers[label:label+1], X[i:i+1]).flatten()[0]
        clustered_sentences[label].append((similarity, sentences[i]))
    for cluster in clustered_sentences:
        cluster.sort(reverse=True)
    return [[sentence for _, sentence in cluster] for cluster in clustered_sentences]

def get_text_file_download_link(text_to_download, filename='Output.txt', button_label="๐Ÿ’พ Save"):
    buffer = BytesIO()
    buffer.write(text_to_download.encode())
    buffer.seek(0)
    b64 = base64.b64encode(buffer.read()).decode()
    href = f'<a href="data:file/txt;base64,{b64}" download="{filename}" style="margin-top:20px;">{button_label}</a>'
    return href

def get_high_info_words_per_cluster(cluster_sentences, num_words=5):
    cluster_high_info_words = []
    for cluster in cluster_sentences:
        cluster_text = " ".join(cluster)
        high_info_words = extract_high_information_words(cluster_text, num_words)
        cluster_high_info_words.append(high_info_words)
    return cluster_high_info_words

def plot_cluster_words(cluster_sentences):
    for i, cluster in enumerate(cluster_sentences):
        cluster_text = " ".join(cluster)
        words = re.findall(r'\b[a-z]{4,}\b', cluster_text)
        word_freq = FreqDist(words)
        top_words = [word for word, _ in word_freq.most_common(20)]
        vectorizer = TfidfVectorizer()
        X = vectorizer.fit_transform(top_words)
        word_vectors = X.toarray()
        similarity_matrix = cosine_similarity(word_vectors)
        G = nx.from_numpy_array(similarity_matrix)
        pos = nx.spring_layout(G, k=0.5)
        plt.figure(figsize=(8, 6))
        nx.draw_networkx(G, pos, node_size=500, font_size=12, font_weight='bold', with_labels=True, labels={i: word for i, word in enumerate(top_words)}, node_color='skyblue', edge_color='gray')
        plt.axis('off')
        plt.title(f"Cluster {i+1} Word Arrangement")
        st.pyplot(plt)
        st.markdown(f"**Cluster {i+1} Details:**")
        st.markdown(f"Top Words: {', '.join(top_words)}")
        st.markdown(f"Number of Sentences: {len(cluster)}")
        st.markdown("---")

def process_file(file_path):
    with open(file_path, 'r', encoding="utf-8") as file:
        file_text = file.read()
    text_without_timestamps = remove_timestamps(file_text)
    top_words = extract_high_information_words(text_without_timestamps, 10)
    with st.expander("๐Ÿ“Š Top 10 High Information Words"):
        st.write(top_words)
    with st.expander("๐Ÿ“ˆ Relationship Graph"):
        display_relationship_graph(top_words)
    context_words = extract_context_words(text_without_timestamps, top_words)
    with st.expander("๐Ÿ”— Context Graph"):
        display_context_graph(context_words)
    with st.expander("๐Ÿ“‘ Context Table"):
        display_context_table(context_words)
    sentences = [line.strip() for line in file_text.split('\n') if len(line.strip()) > 10]
    num_sentences = len(sentences)
    st.write(f"Total Sentences: {num_sentences}")
    num_clusters = st.slider("Number of Clusters", min_value=2, max_value=10, value=5)
    clustered_sentences = cluster_sentences(sentences, num_clusters)
    col1, col2 = st.columns(2)
    with col1:
        st.subheader("Original Text")
        original_text = "\n".join(sentences)
        st.text_area("Original Sentences", value=original_text, height=400)
    with col2:
        st.subheader("Clustered Text")
        clusters = ""
        clustered_text = ""
        cluster_high_info_words = get_high_info_words_per_cluster(clustered_sentences)
        for i, cluster in enumerate(clustered_sentences):
            cluster_text = "\n".join(cluster)
            high_info_words = ", ".join(cluster_high_info_words[i])
            clusters += f"Cluster {i+1} (High Info Words: {high_info_words})\n"
            clustered_text += f"Cluster {i+1} (High Info Words: {high_info_words}):\n{cluster_text}\n\n"
        st.text_area("Clusters", value=clusters, height=200)
        st.text_area("Clustered Sentences", value=clustered_text, height=200)
        clustered_sentences_flat = [sentence for cluster in clustered_sentences for sentence in cluster]
        if set(sentences) == set(clustered_sentences_flat):
            st.write("โœ… All sentences are accounted for in the clustered output.")
        else:
            st.write("โŒ Some sentences are missing in the clustered output.")
    plot_cluster_words(clustered_sentences)

def perform_eda(file_name):
    st.subheader(f"EDA for {file_name}")
    process_file(os.path.abspath(file_name))

st.title("๐Ÿ“บ Transcript Analysis ๐Ÿ“Š")

txt_files_df = get_txt_files()
st.write("Available .txt files:")
st.dataframe(txt_files_df[['File Name']])

st.write("Select a file to perform EDA:")
cols = st.columns(len(txt_files_df))
for i, (_, row) in enumerate(txt_files_df.iterrows()):
    if cols[i].button(f":file_folder: {row['File Name']}"):
        perform_eda(row['File Name'])

if "messages" not in st.session_state:
    st.session_state.messages = []

for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

if prompt := st.chat_input("Ask a question about the data"):
    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):
        st.markdown(prompt)
    response = f"You asked: {prompt}\n\nThis is a placeholder response. In a real application, you would process the user's question and provide an answer based on the data and EDA results."
    st.session_state.messages.append({"role": "assistant", "content": response})
    with st.chat_message("assistant"):
        st.markdown(response)

st.markdown("For more information and updates, visit our [help page](https://huggingface.co/awacke1).")