Spaces:
Sleeping
Sleeping
File size: 10,174 Bytes
069bed5 3f1ac1e 069bed5 3f1ac1e 96afb92 3f1ac1e 96afb92 3f1ac1e 96afb92 3f1ac1e 069bed5 3f1ac1e 96afb92 3f1ac1e 96afb92 3f1ac1e 069bed5 96afb92 868ef7a 3f1ac1e 96afb92 3f1ac1e 069bed5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import streamlit as st
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import linear_kernel, cosine_similarity
import nltk
from nltk.corpus import stopwords
from nltk import FreqDist
import re
import os
import base64
from graphviz import Digraph
from io import BytesIO
import networkx as nx
import matplotlib.pyplot as plt
st.set_page_config(
page_title="๐บTranscript๐EDA๐NLTK",
page_icon="๐ ",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a bug': "https://huggingface.co/awacke1",
'About': "https://huggingface.co/awacke1"
}
)
st.markdown('''
1. ๐ **Transcript Insights Using Exploratory Data Analysis (EDA)** ๐ - Unveil hidden patterns ๐ต๏ธโโ๏ธ and insights ๐ง in your transcripts. ๐.
2. ๐ **Natural Language Toolkit (NLTK)** ๐ ๏ธ:- your compass ๐งญ in the vast landscape of NLP.
3. ๐บ **Transcript Analysis** ๐:Speech recognition ๐๏ธ and thematic extraction ๐, audiovisual content to actionable insights ๐.
''')
nltk.download('punkt')
nltk.download('stopwords')
def remove_timestamps(text):
return re.sub(r'\d{1,2}:\d{2}\n.*\n', '', text)
def extract_high_information_words(text, top_n=10):
words = nltk.word_tokenize(text)
words = [word.lower() for word in words if word.isalpha()]
stop_words = set(stopwords.words('english'))
filtered_words = [word for word in words if word not in stop_words]
freq_dist = FreqDist(filtered_words)
return [word for word, _ in freq_dist.most_common(top_n)]
def create_relationship_graph(words):
graph = Digraph()
for index, word in enumerate(words):
graph.node(str(index), word)
if index > 0:
graph.edge(str(index - 1), str(index), label=word)
return graph
def display_relationship_graph(words):
graph = create_relationship_graph(words)
st.graphviz_chart(graph)
def extract_context_words(text, high_information_words):
words = nltk.word_tokenize(text)
context_words = []
for index, word in enumerate(words):
if word.lower() in high_information_words:
before_word = words[index - 1] if index > 0 else None
after_word = words[index + 1] if index < len(words) - 1 else None
context_words.append((before_word, word, after_word))
return context_words
def create_context_graph(context_words):
graph = Digraph()
for index, (before_word, high_info_word, after_word) in enumerate(context_words):
if before_word:
graph.node(f'before{index}', before_word, shape='box')
graph.node(f'high{index}', high_info_word, shape='ellipse')
if after_word:
graph.node(f'after{index}', after_word, shape='diamond')
if before_word:
graph.edge(f'before{index}', f'high{index}', label=before_word)
if after_word:
graph.edge(f'high{index}', f'after{index}', label=after_word)
return graph
def display_context_graph(context_words):
graph = create_context_graph(context_words)
st.graphviz_chart(graph)
def display_context_table(context_words):
table = "| Before | High Info Word | After |\n|--------|----------------|-------|\n"
for before, high, after in context_words:
table += f"| {before if before else ''} | {high} | {after if after else ''} |\n"
st.markdown(table)
def get_txt_files():
excluded_files = {'freeze.txt', 'requirements.txt', 'packages.txt', 'pre-requirements.txt'}
txt_files = [f for f in os.listdir() if f.endswith('.txt') and f not in excluded_files]
df = pd.DataFrame({
'File Name': txt_files,
'Full Path': [os.path.abspath(f) for f in txt_files]
})
return df
def cluster_sentences(sentences, num_clusters):
sentences = [sentence for sentence in sentences if len(sentence) > 10]
if len(sentences) < num_clusters:
num_clusters = len(sentences)
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(sentences)
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
kmeans.fit(X)
cluster_centers = kmeans.cluster_centers_
clustered_sentences = [[] for _ in range(num_clusters)]
for i, label in enumerate(kmeans.labels_):
similarity = linear_kernel(cluster_centers[label:label+1], X[i:i+1]).flatten()[0]
clustered_sentences[label].append((similarity, sentences[i]))
for cluster in clustered_sentences:
cluster.sort(reverse=True)
return [[sentence for _, sentence in cluster] for cluster in clustered_sentences]
def get_text_file_download_link(text_to_download, filename='Output.txt', button_label="๐พ Save"):
buffer = BytesIO()
buffer.write(text_to_download.encode())
buffer.seek(0)
b64 = base64.b64encode(buffer.read()).decode()
href = f'<a href="data:file/txt;base64,{b64}" download="{filename}" style="margin-top:20px;">{button_label}</a>'
return href
def get_high_info_words_per_cluster(cluster_sentences, num_words=5):
cluster_high_info_words = []
for cluster in cluster_sentences:
cluster_text = " ".join(cluster)
high_info_words = extract_high_information_words(cluster_text, num_words)
cluster_high_info_words.append(high_info_words)
return cluster_high_info_words
def plot_cluster_words(cluster_sentences):
for i, cluster in enumerate(cluster_sentences):
cluster_text = " ".join(cluster)
words = re.findall(r'\b[a-z]{4,}\b', cluster_text)
word_freq = FreqDist(words)
top_words = [word for word, _ in word_freq.most_common(20)]
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(top_words)
word_vectors = X.toarray()
similarity_matrix = cosine_similarity(word_vectors)
G = nx.from_numpy_array(similarity_matrix)
pos = nx.spring_layout(G, k=0.5)
plt.figure(figsize=(8, 6))
nx.draw_networkx(G, pos, node_size=500, font_size=12, font_weight='bold', with_labels=True, labels={i: word for i, word in enumerate(top_words)}, node_color='skyblue', edge_color='gray')
plt.axis('off')
plt.title(f"Cluster {i+1} Word Arrangement")
st.pyplot(plt)
st.markdown(f"**Cluster {i+1} Details:**")
st.markdown(f"Top Words: {', '.join(top_words)}")
st.markdown(f"Number of Sentences: {len(cluster)}")
st.markdown("---")
def process_file(file_path):
with open(file_path, 'r', encoding="utf-8") as file:
file_text = file.read()
text_without_timestamps = remove_timestamps(file_text)
top_words = extract_high_information_words(text_without_timestamps, 10)
with st.expander("๐ Top 10 High Information Words"):
st.write(top_words)
with st.expander("๐ Relationship Graph"):
display_relationship_graph(top_words)
context_words = extract_context_words(text_without_timestamps, top_words)
with st.expander("๐ Context Graph"):
display_context_graph(context_words)
with st.expander("๐ Context Table"):
display_context_table(context_words)
sentences = [line.strip() for line in file_text.split('\n') if len(line.strip()) > 10]
num_sentences = len(sentences)
st.write(f"Total Sentences: {num_sentences}")
num_clusters = st.slider("Number of Clusters", min_value=2, max_value=10, value=5)
clustered_sentences = cluster_sentences(sentences, num_clusters)
col1, col2 = st.columns(2)
with col1:
st.subheader("Original Text")
original_text = "\n".join(sentences)
st.text_area("Original Sentences", value=original_text, height=400)
with col2:
st.subheader("Clustered Text")
clusters = ""
clustered_text = ""
cluster_high_info_words = get_high_info_words_per_cluster(clustered_sentences)
for i, cluster in enumerate(clustered_sentences):
cluster_text = "\n".join(cluster)
high_info_words = ", ".join(cluster_high_info_words[i])
clusters += f"Cluster {i+1} (High Info Words: {high_info_words})\n"
clustered_text += f"Cluster {i+1} (High Info Words: {high_info_words}):\n{cluster_text}\n\n"
st.text_area("Clusters", value=clusters, height=200)
st.text_area("Clustered Sentences", value=clustered_text, height=200)
clustered_sentences_flat = [sentence for cluster in clustered_sentences for sentence in cluster]
if set(sentences) == set(clustered_sentences_flat):
st.write("โ
All sentences are accounted for in the clustered output.")
else:
st.write("โ Some sentences are missing in the clustered output.")
plot_cluster_words(clustered_sentences)
def perform_eda(file_name):
st.subheader(f"EDA for {file_name}")
process_file(os.path.abspath(file_name))
st.title("๐บ Transcript Analysis ๐")
txt_files_df = get_txt_files()
st.write("Available .txt files:")
st.dataframe(txt_files_df[['File Name']])
st.write("Select a file to perform EDA:")
cols = st.columns(len(txt_files_df))
for i, (_, row) in enumerate(txt_files_df.iterrows()):
if cols[i].button(f":file_folder: {row['File Name']}"):
perform_eda(row['File Name'])
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("Ask a question about the data"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
response = f"You asked: {prompt}\n\nThis is a placeholder response. In a real application, you would process the user's question and provide an answer based on the data and EDA results."
st.session_state.messages.append({"role": "assistant", "content": response})
with st.chat_message("assistant"):
st.markdown(response)
st.markdown("For more information and updates, visit our [help page](https://huggingface.co/awacke1).") |