File size: 3,722 Bytes
92eb8dc
8a77bf4
 
 
cf04254
8a77bf4
 
 
 
92eb8dc
8a77bf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7fdd22
d9c302e
b7fdd22
 
 
 
 
 
 
d9c302e
b7fdd22
d9c302e
b7fdd22
 
 
 
 
 
 
 
d9c302e
 
b7fdd22
 
d9c302e
 
b7fdd22
 
 
 
 
 
92eb8dc
cf04254
 
92eb8dc
 
cf04254
 
 
 
92eb8dc
 
d9c302e
cf04254
 
 
 
 
d9c302e
cf04254
 
 
 
d9c302e
 
 
92eb8dc
 
 
 
 
b7fdd22
8d0cab2
 
92eb8dc
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# Import necessary libraries
import streamlit as st
import re
import nltk
import os
from nltk.corpus import stopwords
from nltk import FreqDist
from graphviz import Digraph

# Download NLTK resources
nltk.download('punkt')
nltk.download('stopwords')

def remove_timestamps(text):
    return re.sub(r'\d{1,2}:\d{2}\n.*\n', '', text)

def extract_high_information_words(text, top_n=10):
    words = nltk.word_tokenize(text)
    words = [word.lower() for word in words if word.isalpha()]
    stop_words = set(stopwords.words('english'))
    filtered_words = [word for word in words if word not in stop_words]
    freq_dist = FreqDist(filtered_words)
    return [word for word, _ in freq_dist.most_common(top_n)]

def create_relationship_graph(words):
    graph = Digraph()
    for index, word in enumerate(words):
        graph.node(str(index), word)
        if index > 0:
            graph.edge(str(index - 1), str(index), label=str(index))
    return graph

def display_relationship_graph(words):
    graph = create_relationship_graph(words)
    st.graphviz_chart(graph)

def extract_context_words(text, high_information_words):
    words = nltk.word_tokenize(text)
    context_words = []
    for index, word in enumerate(words):
        if word.lower() in high_information_words:
            before_word = words[index - 1] if index > 0 else None
            after_word = words[index + 1] if index < len(words) - 1 else None
            context_words.append((before_word, word, after_word))
    return context_words

def create_context_graph(context_words):
    graph = Digraph()
    for index, (before_word, high_info_word, after_word) in enumerate(context_words):
        graph.node(f'before{index}', before_word, shape='box') if before_word else None
        graph.node(f'high{index}', high_info_word, shape='ellipse')
        graph.node(f'after{index}', after_word, shape='diamond') if after_word else None
        if before_word:
            graph.edge(f'before{index}', f'high{index}')
        if after_word:
            graph.edge(f'high{index}', f'after{index}')
    return graph

def display_context_graph(context_words):
    graph = create_context_graph(context_words)
    st.graphviz_chart(graph)

def display_context_table(context_words):
    table = "| Before | High Info Word | After |\n|--------|----------------|-------|\n"
    for before, high, after in context_words:
        table += f"| {before if before else ''} | {high} | {after if after else ''} |\n"
    st.markdown(table)

# Load example files
def load_example_files():
    example_files = [f for f in os.listdir() if f.endswith('.txt')]
    selected_file = st.selectbox("๐Ÿ“„ Select an example file:", example_files)
    if st.button(f"๐Ÿ“‚ Load {selected_file}"):
        with open(selected_file, 'r', encoding="utf-8") as file:
            return file.read()
    return None

# Main code for UI
uploaded_file = st.file_uploader("๐Ÿ“ Choose a .txt file", type=['txt'])

example_text = load_example_files()

if example_text:
    file_text = example_text
elif uploaded_file:
    file_text = uploaded_file.read().decode("utf-8")
else:
    file_text = ""

if file_text:
    text_without_timestamps = remove_timestamps(file_text)
    top_words = extract_high_information_words(text_without_timestamps, 10)

    with st.expander("๐Ÿ“Š Top 10 High Information Words"):
        st.write(top_words)

    with st.expander("๐Ÿ“ˆ Relationship Graph"):
        display_relationship_graph(top_words)

    context_words = extract_context_words(text_without_timestamps, top_words)

    with st.expander("๐Ÿ”— Context Graph"):
        display_context_graph(context_words)

    with st.expander("๐Ÿ“‘ Context Table"):
        display_context_table(context_words)