TimeSeries / app.py
awacke1's picture
Update app.py
cd47726
import altair as alt
import pandas as pd
import streamlit as st
from vega_datasets import data
st.set_page_config(
page_title="Time series annotations", page_icon="⬇", layout="centered"
)
@st.experimental_memo
def get_data():
source = data.stocks()
source = source[source.date.gt("2004-01-01")]
return source
@st.experimental_memo(ttl=60 * 60 * 24)
def get_chart(data):
hover = alt.selection_single(
fields=["date"],
nearest=True,
on="mouseover",
empty="none",
)
lines = (
alt.Chart(data, title="Evolution of stock prices")
.mark_line()
.encode(
x="date",
y="price",
color="symbol",
# strokeDash="symbol",
)
)
# Draw points on the line, and highlight based on selection
points = lines.transform_filter(hover).mark_circle(size=65)
# Draw a rule at the location of the selection
tooltips = (
alt.Chart(data)
.mark_rule()
.encode(
x="yearmonthdate(date)",
y="price",
opacity=alt.condition(hover, alt.value(0.3), alt.value(0)),
tooltip=[
alt.Tooltip("date", title="Date"),
alt.Tooltip("price", title="Price (USD)"),
],
)
.add_selection(hover)
)
return (lines + points + tooltips).interactive()
st.title("⬇ Time series annotations")
st.write("Give more context to your time series using annotations!")
col1, col2, col3 = st.columns(3)
with col1:
ticker = st.text_input("Choose a ticker (⬇💬👇ℹ️ ...)", value="⬇")
with col2:
ticker_dx = st.slider(
"Horizontal offset", min_value=-30, max_value=30, step=1, value=0
)
with col3:
ticker_dy = st.slider(
"Vertical offset", min_value=-30, max_value=30, step=1, value=-10
)
# Original time series chart. Omitted `get_chart` for clarity
source = get_data()
chart = get_chart(source)
# Input annotations
ANNOTATIONS = [
("Mar 01, 2008", "Pretty good day for GOOG"),
("Dec 01, 2007", "Something's going wrong for GOOG & AAPL"),
("Nov 01, 2008", "Market starts again thanks to..."),
("Dec 01, 2009", "Small crash for GOOG after..."),
]
# Create a chart with annotations
annotations_df = pd.DataFrame(ANNOTATIONS, columns=["date", "event"])
annotations_df.date = pd.to_datetime(annotations_df.date)
annotations_df["y"] = 0
annotation_layer = (
alt.Chart(annotations_df)
.mark_text(size=15, text=ticker, dx=ticker_dx, dy=ticker_dy, align="center")
.encode(
x="date:T",
y=alt.Y("y:Q"),
tooltip=["event"],
)
.interactive()
)
# Display both charts together
st.altair_chart((chart + annotation_layer).interactive(), use_container_width=True)
st.write("## Code")
st.write(
"See more in our public [GitHub repository](https://github.com/streamlit/example-app-time-series-annotation)"
)
import altair as alt
import pandas as pd
import streamlit as st
from vega_datasets import data
@st.experimental_memo
def get_data():
source = data.stocks()
source = source[source.date.gt("2004-01-01")]
return source
source = get_data()
# Original time series chart. Omitted `get_chart` for clarity
chart = get_chart(source)
# Input annotations
ANNOTATIONS = [
("Mar 01, 2008", "Pretty good day for GOOG"),
("Dec 01, 2007", "Something's going wrong for GOOG & AAPL"),
("Nov 01, 2008", "Market starts again thanks to..."),
("Dec 01, 2009", "Small crash for GOOG after..."),
]
# Create a chart with annotations
annotations_df = pd.DataFrame(ANNOTATIONS, columns=["date", "event"])
annotations_df.date = pd.to_datetime(annotations_df.date)
annotations_df["y"] = 0
annotation_layer = (
alt.Chart(annotations_df)
.mark_text(size=15, text="{ticker}", dx={ticker_dx}, dy={ticker_dy}, align="center")
.encode(
x="date:T",
y=alt.Y("y:Q"),
tooltip=["event"],
)
.interactive()
)
# Display both charts together
st.altair_chart((chart + annotation_layer).interactive(), use_container_width=True)