import requests from bs4 import BeautifulSoup import pandas as pd import gradio as gr import time import os import json import PyPDF2 import io import asyncio import aiohttp import aiofiles from concurrent.futures import ThreadPoolExecutor import re from datetime import datetime import base64 # ... (keep all the previous functions up to create_date_directory) async def download_and_process_pdf(session, title, paper_info, directory): pdf_url = paper_info['pdf_link'] if not pdf_url: return f"No PDF link available for: {title}", None, None try: timeout = aiohttp.ClientTimeout(total=60) # 60 seconds timeout async with session.get(pdf_url, timeout=timeout) as response: if response.status != 200: return f"Failed to download PDF for {title}: HTTP {response.status}", None, None pdf_content = await response.read() file_length = len(pdf_content) if file_length < 5000: # Check if the PDF is less than 5KB return f"Downloaded PDF for {title} is too small ({file_length} bytes). Skipping.", None, None # Convert PDF to text pdf_file = io.BytesIO(pdf_content) pdf_reader = PyPDF2.PdfReader(pdf_file) text = "" for page in pdf_reader.pages: text += page.extract_text() if len(text) < 5000: # Check if the extracted text is less than 5KB return f"Extracted text for {title} is too small ({len(text)} characters). Skipping.", None, None safe_title = safe_filename(title) txt_filename = f"{safe_title}.txt" txt_filepath = os.path.join(directory, txt_filename) async with aiofiles.open(txt_filepath, 'w', encoding='utf-8') as f: await f.write(text) return f"Successfully processed: {txt_filename} (File length: {file_length} bytes)", txt_filepath, text except asyncio.TimeoutError: return f"Timeout while downloading PDF for {title}", None, None except Exception as e: return f"Error processing PDF for {title}: {str(e)}", None, None async def process_papers(data, directory, progress=gr.Progress()): async with aiohttp.ClientSession() as session: tasks = [] for title, paper_info in data.items(): task = asyncio.ensure_future(download_and_process_pdf(session, title, paper_info, directory)) tasks.append(task) results = [] successful_downloads = [] errors = [] for i, task in enumerate(asyncio.as_completed(tasks), start=1): result, filepath, text = await task results.append(result) if filepath and text: successful_downloads.append((filepath, text)) else: errors.append(result) progress(i / len(tasks), f"Processed {i}/{len(tasks)} papers") return results, successful_downloads, errors def get_base64_download_link(content, filename): """Create a base64 download link for text content.""" b64 = base64.b64encode(content.encode()).decode() return f'Download {filename}' def download_all_papers(progress=gr.Progress()): all_data = {} for category in ["top", "latest", "greatest"]: cache_file = f"{category}_papers_cache.json" data = load_cached_data(cache_file) if data: all_data.update(data) date_directory = create_date_directory() results, successful_downloads, errors = asyncio.run(process_papers(all_data, date_directory, progress)) summary = f"Papers processed: {len(all_data)}\n" summary += f"Successfully downloaded and converted: {len(successful_downloads)}\n" summary += f"Errors: {len(errors)}\n\n" summary += "Error List:\n" + "\n".join(errors) if errors else "No errors occurred." download_links = [] text_contents = [] for filepath, text in successful_downloads: filename = os.path.basename(filepath) download_links.append(get_base64_download_link(text, filename)) text_contents.append(f"--- {filename} ---\n\n{text[:1000]}...\n\n") # Show first 1000 characters return summary, "
".join(download_links), "\n".join(text_contents) with gr.Blocks() as demo: gr.Markdown("

Papers Leaderboard

") with gr.Tab("Top Trending Papers"): top_count = gr.Textbox(label="Number of Papers Fetched") top_html = gr.HTML() top_button = gr.Button("Refresh Leaderboard") top_button.click(fn=lambda: update_display("top"), inputs=None, outputs=[top_count, top_html]) with gr.Tab("New Papers"): new_count = gr.Textbox(label="Number of Papers Fetched") new_html = gr.HTML() new_button = gr.Button("Refresh Leaderboard") new_button.click(fn=lambda: update_display("latest"), inputs=None, outputs=[new_count, new_html]) with gr.Tab("Greatest Papers"): greatest_count = gr.Textbox(label="Number of Papers Fetched") greatest_html = gr.HTML() greatest_button = gr.Button("Refresh Leaderboard") greatest_button.click(fn=lambda: update_display("greatest"), inputs=None, outputs=[greatest_count, greatest_html]) download_button = gr.Button("📚 Download All Papers", variant="primary") download_output = gr.Textbox(label="Download Status") download_links = gr.HTML(label="Download Links") text_output = gr.Code(label="Paper Contents", language="text") download_button.click(fn=download_all_papers, inputs=None, outputs=[download_output, download_links, text_output]) # Load initial data for all tabs demo.load(fn=load_all_data, outputs=[top_count, top_html, new_count, new_html, greatest_count, greatest_html]) # Launch the Gradio interface with a public link demo.launch(share=True)