File size: 4,908 Bytes
e53f773
 
 
 
 
8fe1f7f
 
 
fe2ce4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e53f773
 
 
 
 
 
 
 
 
 
fd22ee8
 
 
 
 
 
e53f773
 
 
 
fd22ee8
 
e53f773
fd22ee8
e53f773
 
fd22ee8
 
e53f773
fd22ee8
e53f773
 
fd22ee8
 
e53f773
fd22ee8
e53f773
 
fd22ee8
e53f773
fe2ce4d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import requests
from bs4 import BeautifulSoup
import pandas as pd
import gradio as gr
import time
import os
import json

def get_rank_papers(url, progress=gr.Progress(track_tqdm=True)):
    base_url = "https://paperswithcode.com"
    session = requests.Session()
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
        'Cache-Control': 'no-cache'
    }
    print("Time run at : ", time.ctime())
    offset = 0
    data_list = {}
    break_duplicate = 10
    
    while True:
        response = session.get(url, headers=headers, params={'page': offset})
        if response.status_code != 200:
            print('Failed to retrieve data')
            break
        soup = BeautifulSoup(response.text, 'html.parser')
        paper_info = soup.find_all('div', class_='row infinite-item item paper-card')
        if not paper_info:
            break
        for ppr in paper_info:
            title = ppr.find('h1').text.strip()
            
            if "paper" in ppr.find('a')['href']:
                link = base_url + ppr.find('a')['href']
            else:
                link = ppr.find('a')['href'] 
            Github_Star = ppr.find('span', class_='badge badge-secondary').text.strip().replace(',', '')
            pdf_link = ''
            try:
                response_link = session.get(link, headers=headers)
                soup_link = BeautifulSoup(response_link.text, 'html.parser')
                paper_info_link = soup_link.find_all('div', class_='paper-abstract')
                pdf_link = paper_info_link[0].find('div', class_='col-md-12').find('a')['href']
            except:
                pass
            if title not in data_list:
                data_list[title] = {'link': link, 'Github Star': int(Github_Star), 'pdf_link': pdf_link.strip()}
            else:
                break_duplicate -= 1
                if break_duplicate == 0:
                    return data_list
        offset += 1 
        progress.update(offset)
    print('Data retrieval complete')   
    return data_list

def load_cached_data(cache_file):
    if os.path.exists(cache_file):
        with open(cache_file, 'r') as f:
            return json.load(f)
    return None

def save_cached_data(data, cache_file):
    with open(cache_file, 'w') as f:
        json.dump(data, f)

def format_dataframe(data):
    df = pd.DataFrame(data).T
    df['title'] = df.index
    df = df[['title', 'Github Star', 'link', 'pdf_link']]
    df['link'] = df['link'].apply(lambda x: f'<a href="{x}" target="_blank">Link</a>')
    df['pdf_link'] = df['pdf_link'].apply(lambda x: f'<a href="{x}" target="_blank">{x}</a>')
    return df

def load_and_cache_data(url, cache_file):
    cached_data = load_cached_data(cache_file)
    
    if cached_data:
        print(f"Loading cached data from {cache_file}")
        return cached_data
    
    print(f"Fetching new data from {url}")
    new_data = get_rank_papers(url)
    save_cached_data(new_data, cache_file)
    return new_data

def update_display(category):
    cache_file = f"{category}_papers_cache.json"
    url = f"https://paperswithcode.com/{category}" if category != "top" else "https://paperswithcode.com/"
    
    data = load_and_cache_data(url, cache_file)
    df = format_dataframe(data)
    
    return len(df), df.to_html(escape=False, index=False)

def load_all_data():
    top_count, top_html = update_display("top")
    new_count, new_html = update_display("latest")
    greatest_count, greatest_html = update_display("greatest")
    return top_count, top_html, new_count, new_html, greatest_count, greatest_html

with gr.Blocks() as demo:
    gr.Markdown("<h1><center>Papers Leaderboard</center></h1>")
    
    with gr.Tab("Top Trending Papers"):
        top_count = gr.Textbox(label="Number of Papers Fetched")
        top_html = gr.HTML()
        top_button = gr.Button("Refresh Leaderboard")
        top_button.click(fn=lambda: update_display("top"), inputs=None, outputs=[top_count, top_html])
    
    with gr.Tab("New Papers"):
        new_count = gr.Textbox(label="Number of Papers Fetched")
        new_html = gr.HTML()
        new_button = gr.Button("Refresh Leaderboard")
        new_button.click(fn=lambda: update_display("latest"), inputs=None, outputs=[new_count, new_html])
    
    with gr.Tab("Greatest Papers"):
        greatest_count = gr.Textbox(label="Number of Papers Fetched")
        greatest_html = gr.HTML()
        greatest_button = gr.Button("Refresh Leaderboard")
        greatest_button.click(fn=lambda: update_display("greatest"), inputs=None, outputs=[greatest_count, greatest_html])

    # Load initial data for all tabs
    demo.load(fn=load_all_data, outputs=[top_count, top_html, new_count, new_html, greatest_count, greatest_html])

# Launch the Gradio interface with a public link
demo.launch(share=True)