File size: 4,989 Bytes
e53f773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import requests
from bs4 import BeautifulSoup
import pandas as pd
import gradio as gr
import time

def get_rank_papers(url,progress=gr.Progress(track_tqdm=True)):
    base_url = "https://paperswithcode.com"

    session = requests.Session()
    headers = {
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
    'Cache-Control': 'no-cache'
    }
    print("Time run at : ",time.ctime())
    offset = 0
    data_list = {}
    break_duplicate = 10
    

    while True:
        response = session.get(url, headers=headers, params={'page': offset})
        if response.status_code != 200:
            print('Failed to retrieve data')
            break
        soup = BeautifulSoup(response.text, 'html.parser')
        paper_info = soup.find_all('div', class_='row infinite-item item paper-card')
        if not paper_info:
            break
        for ppr in paper_info:
            title = ppr.find('h1').text.strip()
            
            if "paper" in ppr.find('a')['href']:
                link = base_url + ppr.find('a')['href']
            else:
                link = ppr.find('a')['href'] 
            Github_Star = ppr.find('span', class_='badge badge-secondary').text.strip().replace(',', '')
            pdf_link = ''
            try:
                response_link  = session.get(link, headers=headers)
                soup_link = BeautifulSoup(response_link.text, 'html.parser')
                paper_info_link = soup_link.find_all('div', class_='paper-abstract')
                pdf_link = paper_info_link[0].find('div', class_='col-md-12').find('a')['href']
            except:
                pass
            if title not in data_list:
                data_list[title] = {'link': link, 'Github Star': int(Github_Star), 'pdf_link': pdf_link.strip()}
            else:
                break_duplicate -= 1
                if break_duplicate == 0:
                    return data_list
        offset += 1 
        progress.update(offset)
    print('Data retrieval complete')   
    return data_list


import requests
from bs4 import BeautifulSoup
import pandas as pd
import gradio as gr
import time
import os
import json
from datetime import datetime

def get_rank_papers(url, progress=gr.Progress(track_tqdm=True)):
    # ... (keep the existing get_rank_papers function as is)
    # This function remains unchanged from your original code

def load_cached_data(cache_file):
    if os.path.exists(cache_file):
        with open(cache_file, 'r') as f:
            return json.load(f)
    return None

def save_cached_data(data, cache_file):
    with open(cache_file, 'w') as f:
        json.dump(data, f)

def format_dataframe(data):
    df = pd.DataFrame(data).T
    df['title'] = df.index
    df = df[['title', 'Github Star', 'link', 'pdf_link']]
    df['link'] = df['link'].apply(lambda x: f'<a href="{x}" target="_blank">Link</a>')
    df['pdf_link'] = df['pdf_link'].apply(lambda x: f'<a href="{x}" target="_blank">{x}</a>')
    return df

def load_and_cache_data(url, cache_file):
    cached_data = load_cached_data(cache_file)
    
    if cached_data:
        print(f"Loading cached data from {cache_file}")
        return cached_data
    
    print(f"Fetching new data from {url}")
    new_data = get_rank_papers(url)
    save_cached_data(new_data, cache_file)
    return new_data

def update_display(category):
    cache_file = f"{category}_papers_cache.json"
    url = f"https://paperswithcode.com/{category}" if category != "top" else "https://paperswithcode.com/"
    
    data = load_and_cache_data(url, cache_file)
    df = format_dataframe(data)
    
    return len(df), df.to_html(escape=False, index=False)

with gr.Blocks() as demo:
    gr.Markdown("<h1><center>Papers Leaderboard</center></h1>")
    
    with gr.Tab("Top Trending Papers"):
        top_output = [gr.Textbox(label="Number of Papers Fetched"),
                      gr.HTML()]
        top_button = gr.Button("Refresh Leaderboard")
        top_button.click(fn=lambda: update_display("top"), inputs=None, outputs=top_output)
    
    with gr.Tab("New Papers"):
        new_output = [gr.Textbox(label="Number of Papers Fetched"),
                      gr.HTML()]
        new_button = gr.Button("Refresh Leaderboard")
        new_button.click(fn=lambda: update_display("latest"), inputs=None, outputs=new_output)
    
    with gr.Tab("Greatest Papers"):
        greatest_output = [gr.Textbox(label="Number of Papers Fetched"),
                           gr.HTML()]
        greatest_button = gr.Button("Refresh Leaderboard")
        greatest_button.click(fn=lambda: update_display("greatest"), inputs=None, outputs=greatest_output)

    # Load initial data for all tabs
    demo.load(fn=lambda: (update_display("top"), update_display("latest"), update_display("greatest")),
              inputs=None,
              outputs=[top_output, new_output, greatest_output])

# Launch the Gradio interface
demo.launch()