Spaces:
Sleeping
Sleeping
File size: 6,579 Bytes
a2f0fdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import requests
from bs4 import BeautifulSoup
import pandas as pd
import gradio as gr
import time
import os
import json
def get_rank_papers(url, progress=gr.Progress(track_tqdm=True)):
base_url = "https://paperswithcode.com"
session = requests.Session()
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
'Cache-Control': 'no-cache'
}
print("Time run at : ", time.ctime())
offset = 0
data_list = {}
break_duplicate = 10
while True:
response = session.get(url, headers=headers, params={'page': offset})
if response.status_code != 200:
print('Failed to retrieve data')
break
soup = BeautifulSoup(response.text, 'html.parser')
paper_info = soup.find_all('div', class_='row infinite-item item paper-card')
if not paper_info:
break
for ppr in paper_info:
title = ppr.find('h1').text.strip()
if "paper" in ppr.find('a')['href']:
link = base_url + ppr.find('a')['href']
else:
link = ppr.find('a')['href']
Github_Star = ppr.find('span', class_='badge badge-secondary').text.strip().replace(',', '')
pdf_link = ''
try:
response_link = session.get(link, headers=headers)
soup_link = BeautifulSoup(response_link.text, 'html.parser')
paper_info_link = soup_link.find_all('div', class_='paper-abstract')
pdf_link = paper_info_link[0].find('div', class_='col-md-12').find('a')['href']
except:
pass
if title not in data_list:
data_list[title] = {'link': link, 'Github Star': int(Github_Star), 'pdf_link': pdf_link.strip()}
else:
break_duplicate -= 1
if break_duplicate == 0:
return data_list
offset += 1
progress.update(offset)
print('Data retrieval complete')
return data_list
def load_cached_data(cache_file):
if os.path.exists(cache_file):
with open(cache_file, 'r') as f:
return json.load(f)
return None
def save_cached_data(data, cache_file):
with open(cache_file, 'w') as f:
json.dump(data, f)
def format_dataframe(data):
df = pd.DataFrame(data).T
df['title'] = df.index
df = df[['title', 'Github Star', 'link', 'pdf_link']]
return df
def load_and_cache_data(url, cache_file):
cached_data = load_cached_data(cache_file)
if cached_data:
print(f"Loading cached data from {cache_file}")
return cached_data
print(f"Fetching new data from {url}")
new_data = get_rank_papers(url)
save_cached_data(new_data, cache_file)
return new_data
def update_display(category):
cache_file = f"{category}_papers_cache.json"
url = f"https://paperswithcode.com/{category}" if category != "top" else "https://paperswithcode.com/"
data = load_and_cache_data(url, cache_file)
df = format_dataframe(data)
return len(df), df
def load_all_data():
top_count, top_df = update_display("top")
new_count, new_df = update_display("latest")
greatest_count, greatest_df = update_display("greatest")
return top_count, top_df, new_count, new_df, greatest_count, greatest_df
def save_dataframe_generic(df, filename):
try:
df.to_csv(filename, index=False)
return "Dataframe saved successfully."
except Exception as e:
return f"Error saving dataframe: {e}"
def load_dataframe_generic(filename):
try:
if os.path.exists(filename):
df = pd.read_csv(filename)
return df, "Dataframe loaded successfully."
else:
return pd.DataFrame(), "Dataframe file not found."
except Exception as e:
return pd.DataFrame(), f"Error loading dataframe: {e}"
with gr.Blocks() as demo:
gr.Markdown("<h1><center>Papers Leaderboard</center></h1>")
with gr.Tab("Top Trending Papers"):
top_count = gr.Textbox(label="Number of Papers Fetched")
top_df = gr.DataFrame(interactive=True)
top_button = gr.Button("Refresh Leaderboard")
top_load_button = gr.Button("Load Dataframe")
top_save_button = gr.Button("Save Dataframe")
top_save_status = gr.Textbox(label="Status")
top_button.click(fn=lambda: update_display("top"), inputs=None, outputs=[top_count, top_df])
top_save_button.click(fn=lambda df: save_dataframe_generic(df, 'top_dataframe.csv'), inputs=top_df, outputs=top_save_status)
top_load_button.click(fn=lambda: load_dataframe_generic('top_dataframe.csv'), inputs=None, outputs=[top_df, top_save_status])
with gr.Tab("New Papers"):
new_count = gr.Textbox(label="Number of Papers Fetched")
new_df = gr.DataFrame(interactive=True)
new_button = gr.Button("Refresh Leaderboard")
new_load_button = gr.Button("Load Dataframe")
new_save_button = gr.Button("Save Dataframe")
new_save_status = gr.Textbox(label="Status")
new_button.click(fn=lambda: update_display("latest"), inputs=None, outputs=[new_count, new_df])
new_save_button.click(fn=lambda df: save_dataframe_generic(df, 'new_dataframe.csv'), inputs=new_df, outputs=new_save_status)
new_load_button.click(fn=lambda: load_dataframe_generic('new_dataframe.csv'), inputs=None, outputs=[new_df, new_save_status])
with gr.Tab("Greatest Papers"):
greatest_count = gr.Textbox(label="Number of Papers Fetched")
greatest_df = gr.DataFrame(interactive=True)
greatest_button = gr.Button("Refresh Leaderboard")
greatest_load_button = gr.Button("Load Dataframe")
greatest_save_button = gr.Button("Save Dataframe")
greatest_save_status = gr.Textbox(label="Status")
greatest_button.click(fn=lambda: update_display("greatest"), inputs=None, outputs=[greatest_count, greatest_df])
greatest_save_button.click(fn=lambda df: save_dataframe_generic(df, 'greatest_dataframe.csv'), inputs=greatest_df, outputs=greatest_save_status)
greatest_load_button.click(fn=lambda: load_dataframe_generic('greatest_dataframe.csv'), inputs=None, outputs=[greatest_df, greatest_save_status])
# Load initial data for all tabs
demo.load(fn=load_all_data, outputs=[top_count, top_df, new_count, new_df, greatest_count, greatest_df])
# Launch the Gradio interface with a public link
demo.launch(share=True)
|