Spaces:
Sleeping
Sleeping
File size: 7,814 Bytes
7b8a04f 36e61fc 7b8a04f 36e61fc 7b8a04f 36e61fc 7b8a04f 36e61fc 7b8a04f 36e61fc 7b8a04f 36e61fc 7b8a04f 3e3cb70 7b8a04f 36e61fc 7b8a04f 36e61fc 7b8a04f 36e61fc 7b8a04f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import requests
from bs4 import BeautifulSoup
import pandas as pd
import gradio as gr
import time
import os
import json
import re
from datetime import datetime
import torch
from transformers import AutoTokenizer, AutoModel
import networkx as nx
from pyvis.network import Network
import matplotlib.pyplot as plt
# π§ββοΈ Magical Utility Functions π§ββοΈ
def safe_filename(title):
"""Convert a string to a safe filename. No more 'file not found' nightmares! π
ββοΈπ"""
return re.sub(r'[^\w\-_\. ]', '_', title)
# π΅οΈββοΈ Data Fetching and Caching Shenanigans π΅οΈββοΈ
def get_rank_papers(url, progress=gr.Progress(track_tqdm=True)):
"""Fetch papers from the interwebs. It's like fishing, but for knowledge! π£π"""
base_url = "https://paperswithcode.com"
session = requests.Session()
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
'Cache-Control': 'no-cache'
}
print("Time run at : ", time.ctime())
offset = 0
data_list = {}
break_duplicate = 10
while True:
response = session.get(url, headers=headers, params={'page': offset})
if response.status_code != 200:
print('Failed to retrieve data')
break
soup = BeautifulSoup(response.text, 'html.parser')
paper_info = soup.find_all('div', class_='row infinite-item item paper-card')
if not paper_info:
print("No paper information found.")
break
for ppr in paper_info:
title = ppr.find('h1').text.strip()
if "paper" in ppr.find('a')['href']:
link = base_url + ppr.find('a')['href']
else:
link = ppr.find('a')['href']
Github_Star = ppr.find('span', class_='badge badge-secondary').text.strip().replace(',', '') if ppr.find('span', class_='badge badge-secondary') else "0"
if title not in data_list:
data_list[title] = {'link': link, 'Github Star': int(Github_Star), 'title': title}
else:
break_duplicate -= 1
if break_duplicate == 0:
return data_list
offset += 1
progress.update(offset)
print('Data retrieval complete')
return data_list
def load_cached_data(cache_file):
"""Load cached data. It's like finding money in your old jeans! π°π§΅"""
if os.path.exists(cache_file):
with open(cache_file, 'r') as f:
return json.load(f)
return None
def save_cached_data(data, cache_file):
"""Save data to cache. Future you will thank present you! π¦ΈββοΈπ°οΈ"""
with open(cache_file, 'w') as f:
json.dump(data, f)
def load_and_cache_data(url, cache_file):
"""Load data from cache or fetch new data. It's like a time machine for your data! β°π"""
cached_data = load_cached_data(cache_file)
if cached_data:
print(f"Loading cached data from {cache_file}")
return cached_data
print(f"Fetching new data from {url}")
new_data = get_rank_papers(url)
save_cached_data(new_data, cache_file)
return new_data
# π Transformer-based Word and Context Analysis π
def generate_embeddings(titles):
"""Generate word embeddings using a transformer model."""
model_name = "sentence-transformers/all-MiniLM-L6-v2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
embeddings = []
with torch.no_grad():
for title in titles:
tokens = tokenizer(title, return_tensors="pt", padding=True, truncation=True)
output = model(**tokens)
embeddings.append(output.last_hidden_state.mean(dim=1).squeeze())
return embeddings
def build_graph(titles, embeddings, threshold=0.7):
"""Build a graph of words based on similarity between titles."""
G = nx.Graph()
for i, title in enumerate(titles):
G.add_node(i, label=title)
for i in range(len(embeddings)):
for j in range(i+1, len(embeddings)):
sim = torch.cosine_similarity(embeddings[i], embeddings[j], dim=0).item()
if sim > threshold:
G.add_edge(i, j, weight=sim)
return G
def visualize_graph(G, titles):
"""Visualize the graph using pyvis and show it as a mind map."""
net = Network(height="750px", width="100%", notebook=True)
for node in G.nodes(data=True):
net.add_node(node[0], label=titles[node[0]])
for edge in G.edges(data=True):
net.add_edge(edge[0], edge[1], value=edge[2]['weight'])
net.show("paper_network.html")
return "paper_network.html"
def analyze_and_generate_graph(progress=gr.Progress()):
"""Analyze papers, generate embeddings, and visualize the relationship graph."""
all_data = {}
for category in ["top", "latest", "greatest"]:
cache_file = f"{category}_papers_cache.json"
data = load_cached_data(cache_file)
if data:
all_data.update(data)
titles = [paper['title'] for paper in all_data.values()]
# Generate embeddings
embeddings = generate_embeddings(titles)
# Build a similarity graph based on the embeddings
G = build_graph(titles, embeddings)
# Visualize the graph as a mind map
graph_file = visualize_graph(G, titles)
summary = f"π Papers analyzed: {len(titles)}\n"
summary += f"β
Graph generated and visualized.\n"
return summary, graph_file
# π Define load_all_data Properly π
def load_all_data():
"""Load data for all categories and prepare for display."""
top_count, top_html = update_display("top")
new_count, new_html = update_display("latest")
greatest_count, greatest_html = update_display("greatest")
return top_count, top_html, new_count, new_html, greatest_count, greatest_html
# π Gradio Interface: Where the Magic Happens π
with gr.Blocks() as demo:
gr.Markdown("<h1><center>Papers Leaderboard with Context Analysis</center></h1>")
with gr.Tab("Top Trending Papers"):
top_count = gr.Textbox(label="Number of Papers Fetched")
top_html = gr.HTML()
top_button = gr.Button("Refresh Leaderboard")
top_button.click(fn=lambda: update_display("top"), inputs=None, outputs=[top_count, top_html])
with gr.Tab("New Papers"):
new_count = gr.Textbox(label="Number of Papers Fetched")
new_html = gr.HTML()
new_button = gr.Button("Refresh Leaderboard")
new_button.click(fn=lambda: update_display("latest"), inputs=None, outputs=[new_count, new_html])
with gr.Tab("Greatest Papers"):
greatest_count = gr.Textbox(label="Number of Papers Fetched")
greatest_html = gr.HTML()
greatest_button = gr.Button("Refresh Leaderboard")
greatest_button.click(fn=lambda: update_display("greatest"), inputs=None, outputs=[greatest_count, greatest_html])
analyze_button = gr.Button("π Analyze and Generate Graph", variant="primary")
analyze_output = gr.Textbox(label="Analysis Status")
graph_output = gr.HTML(label="Graph Visualization")
analyze_button.click(fn=analyze_and_generate_graph, inputs=None, outputs=[analyze_output, graph_output])
# Load initial data for all tabs
demo.load(fn=load_all_data, outputs=[top_count, top_html, new_count, new_html, greatest_count, greatest_html])
# π Launch the Gradio interface with a public link
print("π Launching the Papers Leaderboard with Context Analysis! Get ready to explore the relationships between papers! π’π")
demo.launch(share=True)
|