awacke1 commited on
Commit
993df63
ยท
verified ยท
1 Parent(s): 12a888f

Update Knowledge Engineering with Graphs and Medical Knowledge from PDF Documents.md

Browse files
Knowledge Engineering with Graphs and Medical Knowledge from PDF Documents.md CHANGED
@@ -1,188 +1,226 @@
1
- # PDF Research Outline: Knowledge Engineering & AI in Digital Documents - The Remix!
2
-
3
- ## I. Introduction
4
-
5
- **Context & Motivation:**
6
- The humble PDF remains the digital workhorse for scientific papers, clinical notes, and digital archives. As AI and ML advance rapidly, automatically extracting meaningful insights from PDFs is critical for learning, clinical care, and managing information overload. This research aims to transform PDFs from obstacles into valuable resources.
7
-
8
- **Inspirational Note:**
9
- "All life is part of a complete circle. Focus on well-being and prosperity for all - universal well-being and peace." โ˜ฎ
10
- *(Even if parsing PDFs for peace feels ambitious, we aim high!)*
11
-
12
- **Objective:**
13
- Develop a framework for analyzing diverse PDFs, from academic articles to clinical notes. Curate key literature and identify tools to make PDFs more accessible and useful.
14
-
15
- ## II. Background and Literature Review
16
-
17
- **Evolution of PDFs:**
18
- Originating in the 1990s to ensure document fidelity across platforms, PDFs are now the standard for archiving diverse content. This section explores their history and the challenge of making them machine-readable.
19
-
20
- **Knowledge Engineering and Document Analysis:**
21
- AI/ML has progressed from basic text extraction to semantic understanding, tackling scanned images, complex layouts, and knowledge graph construction.
22
-
23
- **Existing Resources:**
24
- - Archive.org: Scanned books, historical documents, diverse PDFs.
25
- - Link: [Visit Archive.org](https://archive.org)
26
- - Arxiv.org: Pre-prints of cutting-edge AI research.
27
- - Link: [Visit Arxiv.org](https://arxiv.org)
28
- - Hugging Face Datasets and Models: Extensive datasets and pre-trained models for AI tasks.
29
- - Link: [Explore Hugging Face](https://huggingface.co)
30
-
31
- ## III. Research Objectives and Questions
32
-
33
- **Primary Questions:**
34
- 1 โ˜ฎ How can AI/ML (Transformers, GNNs, multimodal models) extract meaningful knowledge from PDFs beyond raw text?
35
- 2 โ˜ฎ What approaches best handle diverse PDFs (science papers, clinical notes, digitized books)? Can one model address all types?
36
-
37
- **Secondary Goals:**
38
- - Evaluate PDF parsing and layout analysis models for robustness.
39
- - Address combining diverse PDF datasets effectively.
40
-
41
- **Scope:**
42
- Includes scholarly papers, clinical documents (e.g., discharge summaries, nursing notes), book chapters, and historical archives.
43
-
44
- ## IV. Methodology
45
-
46
- **Data Collection & Sources:**
47
- - Datasets: Hugging Face (e.g., cais/hle, mlfoundations/MINT-1T-PDF-CC-2024-10), Archive.org, Arxiv.org, open-source clinical datasets (e.g., MIMIC, PMC OA).
48
- - Document Types: Research papers, clinical notes, digitized books.
49
-
50
- **Preprocessing:**
51
- - OCR & Layout Analysis: Transformer-based vision models to handle columns, headers, footers, figures, tables.
52
- - Semantic Segmentation: Deep learning to identify text roles (title, abstract, clinical finding, dosage).
53
-
54
- **Modeling and Analysis:**
55
- - Transformer Architectures: LayoutLM, Donut, fine-tuned LLMs (e.g., Llama, Flan-T5) for document tasks.
56
- - Clinical Focus: BioBERT, ClinicalBERT for medical text processing (NER, summarization).
57
- - Comparative Evaluation: Benchmark models on layout accuracy, clinical entity extraction.
58
-
59
- **Evaluation Metrics:**
60
- - Extraction: Accuracy, Precision, Recall, F1-score for layout, text, tables, NER.
61
- - Summarization: ROUGE, BLEU scores; human evaluation for clinical insights.
62
- - Usability: Ease of using extracted data for applications (e.g., quiz generation).
63
-
64
- ## V. Top Arxiv Papers in Knowledge Engineering for PDFs
65
-
66
- This is the "Shoulders of Giants" section. Below are influential papers to start with. *Note: The field evolves quickly!*
67
-
68
- - 1 โ˜ฎ LayoutLM: Pre-training of Text and Layout for Document Image Understanding
69
- - Insight: Pioneered combining text and layout in pre-training, boosting document AI tasks. A must-read.
70
- - arXiv: [arXiv:1912.13318](https://arxiv.org/abs/1912.13318)
71
- - PDF: [PDF](https://arxiv.org/pdf/1912.13318.pdf)
72
- - 2 โ˜ฎ LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking
73
- - Insight: Enhanced LayoutLM with unified masking and better image integration. State-of-the-art for a time.
74
- - arXiv: [arXiv:2204.08387](https://arxiv.org/abs/2204.08387)
75
- - PDF: [PDF](https://arxiv.org/pdf/2204.08387.pdf)
76
- - 3 โ˜ฎ Donut: Document Understanding Transformer without OCR
77
- - Insight: End-to-end image-to-text, skipping traditional OCR. Innovative approach.
78
- - arXiv: [arXiv:2111.15664](https://arxiv.org/abs/2111.15664)
79
- - PDF: [PDF](https://arxiv.org/pdf/2111.15664.pdf)
80
- - 4 โ˜ฎ GROBID: Combining Automatic Bibliographical Data Recognition and Terminology Extraction
81
- - Insight: A reliable tool for parsing scientific PDFs (headers, references). Practical and widely used.
82
- - arXiv: [arXiv:0905.4028](https://arxiv.org/abs/0905.4028)
83
- - PDF: [PDF](https://arxiv.org/pdf/0905.4028.pdf)
84
- - 5 โ˜ฎ Deep Learning for Table Detection and Structure Recognition: A Survey
85
- - Insight: Covers challenges of table extraction in PDFs, crucial for complex documents.
86
- - arXiv: [arXiv:2105.07618](https://arxiv.org/abs/2105.07618)
87
- - PDF: [PDF](https://arxiv.org/pdf/2105.07618.pdf)
88
- - 6 โ˜ฎ A Survey on Deep Learning for Named Entity Recognition
89
- - Insight: NER is key for extracting meaning (e.g., drugs, symptoms) from PDFs. Comprehensive overview.
90
- - arXiv: [arXiv:1812.09449](https://arxiv.org/abs/1812.09449)
91
- - PDF: [PDF](https://arxiv.org/pdf/1812.09449.pdf)
92
- - 7 โ˜ฎ BioBERT: a pre-trained biomedical language representation model for biomedical text mining
93
- - Insight: Domain-specific model for clinical NER and text mining, vital for medical PDFs.
94
- - arXiv: [arXiv:1901.08746](https://arxiv.org/abs/1901.08746)
95
- - PDF: [PDF](https://arxiv.org/pdf/1901.08746.pdf)
96
- - 8 โ˜ฎ DocBank: A Benchmark Dataset for Document Layout Analysis
97
- - Insight: Provides layout annotations from arXiv LaTeX sources, great for training models.
98
- - arXiv: [arXiv:2006.01038](https://arxiv.org/abs/2006.01038)
99
- - PDF: [PDF](https://arxiv.org/pdf/2006.01038.pdf)
100
- - 9 โ˜ฎ Clinical Text Summarization: Adapting Large Language Models
101
- - Insight: Shows LLMs can summarize clinical notes (e.g., from MIMIC), relevant for medical PDFs.
102
- - arXiv: [arXiv:2307.00401](https://arxiv.org/abs/2307.00401)
103
- - PDF: [PDF](https://arxiv.org/pdf/2307.00401.pdf)
104
- - 10 โ˜ฎ PubLayNet: Largest dataset ever for document layout analysis
105
- - Insight: Massive dataset from PubMed Central, ideal for testing model robustness.
106
- - arXiv: [arXiv:1908.07836](https://arxiv.org/abs/1908.07836)
107
- - PDF: [PDF](https://arxiv.org/pdf/1908.07836.pdf)
108
-
109
- *Disclaimer: Always verify arXiv links and versions, as updates are frequent.*
110
-
111
- ## VI. PDF Datasets and Data Sources
112
-
113
- **Hugging Face Datasets:**
114
- - cais/hle: Focuses on high-level elements in scientific documents.
115
- - JohnLyu/cc_main_2024_51_links_pdf_url: Common Crawl URLs, diverse but messy.
116
- - mlfoundations/MINT-1T-PDF-CC-2024-10: Large-scale Common Crawl PDF collection.
117
- - ranWang/un_pdf_data_urls_set: UN PDFs, potentially multilingual and formal.
118
- - Wikit/pdf-parsing-bench-results: Benchmark results, useful for comparisons.
119
- - pixparse/pdfa-eng-wds: PDF/A format, possibly cleaner layouts.
120
-
121
- **Clinical/Medical Datasets:**
122
- - MIMIC-III/MIMIC-IV (PhysioNet): De-identified ICU data with discharge summaries, nursing notes. Requires access.
123
- - Link: [Visit PhysioNet](https://physionet.org/content/mimiciv/)
124
- - PubMed Central Open Access (PMC OA): Biomedical literature, many PDFs.
125
- - Link: [Access PMC OA](https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/)
126
- - CORD-19: COVID-19 papers, many in PDF format.
127
- - ClinicalTrials.gov: Links to trial protocols, results in PDFs.
128
- - Government Reports: WHO, CDC, NIH PDFs with health data, guidelines.
129
- - Open-Source Nursing Notes: Rare due to privacy (HIPAA). Consider research papers, institutional collaboration, or synthetic data.
130
-
131
- **Integration Strategy:**
132
- 1 โ˜ฎ Identify Task: Layout analysis, clinical NER, or summarization.
133
- 2 โ˜ฎ Select Data: DocBank/PubLayNet for layout, MIMIC/PMC for clinical.
134
- 3 โ˜ฎ Harmonize Labels: Map annotation schemes.
135
- 4 โ˜ฎ Weighted Sampling: Prioritize rare data (e.g., clinical notes).
136
- 5 โ˜ฎ Domain Adaptation: Fine-tune general models on specific domains.
137
- 6 โ˜ฎ Data Augmentation: Add noise, rotate images, or use text synonyms.
138
-
139
- ## VII. PDF Models and Tools
140
-
141
- **Models:**
142
- - Layout Analysis:
143
- - LayoutLM/LayoutLMv2/LayoutLMv3 (Microsoft): Transformers for document understanding.
144
- - Donut (Naver): OCR-free document processing.
145
- - GROBID: Strong for scientific PDFs.
146
- - HURIDOCS/pdf-document-layout-analysis: Worth exploring.
147
- - Tesseract OCR/EasyOCR: Core OCR tools.
148
- - PyMuPDF/PDFMiner.six: Low-level PDF extraction libraries.
149
- - Quiz Generation:
150
- - fbellame/llama2-pdf-to-quizz-13b: LLM for interactive tasks.
151
- - Content Processing:
152
- - vikp/pdf_postprocessor_t5: Cleans extracted text.
153
- - BioBERT/ClinicalBERT: Medical text NER, extraction.
154
- - General LLMs: Summarize or query extracted text.
155
- - Toolkits:
156
- - opendatalab/PDF-Extract-Kit: Multi-tool bundle.
157
- - Spark OCR (John Snow Labs): Scalable, commercial.
158
-
159
- **Evaluation:**
160
- - Accuracy: Benchmark layout, extraction tasks.
161
- - Speed/Scalability: Handle small or large PDF sets.
162
- - Domain Specificity: Performance on medical or complex layouts.
163
- - Resources: GPU needs vs. lightweight options.
164
- - Ease of Use: Accessibility for integration.
165
-
166
- ## VIII. PDF Adjacent Resources and Global Perspectives
167
-
168
- **Platforms:**
169
- - lastexam.ai: Converts PDFs to exam prep, showing application potential.
170
- - Annotation Tools: Label Studio, Doccano for custom data labeling.
171
- - Knowledge Graphs: Neo4j, RDFLib to store extracted data.
172
-
173
- **Insights:**
174
- - Knowledge flows dynamically, requiring adaptable methods.
175
- - Goal: Improve science access, patient care, history preservation beyond metrics.
176
-
177
- ## IX. Discussion and Future Work
178
-
179
- **Synthesis:**
180
- Bridge messy PDFs to structured knowledge using AI, enabling applications like quizzes or clinical support, especially in medicine.
181
-
182
- **Challenges:**
183
- - Data Heterogeneity: Scanned vs. digital, varied layouts.
184
- - Clinical Data Scarcity: Privacy limits access.
185
- - Layout Issues: Tables, figures disrupt parsing.
186
- - Semantic Ambiguity: Clinical notes with typos, abbreviations.
187
- - Scalability: Processing millions of PDFs.
188
- - Evaluation: Validating
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # PDF Research Outline: Knowledge Engineering & AI in Digital Documents ๐Ÿ“œ
2
+
3
+ 1. โ˜ฎ Introduction
4
+
5
+ 1.1 ๐Ÿ“š Context & Motivation
6
+ PDFs are ubiquitous for scientific papers, clinical notes, and digital archives. As AI and ML advance, extracting insights from PDFs is critical for learning, clinical care, and managing information. This research aims to transform PDFs into valuable resources.
7
+
8
+ 1.2 ๐Ÿ•Š๏ธ Inspirational Note
9
+ "All life is part of a complete circle. Focus on well-being and prosperity for all - universal well-being and peace."
10
+ Parsing PDFs for broader impact is ambitious but aligns with high aspirations.
11
+
12
+ 1.3 ๐ŸŽฏ Objective
13
+ Develop a framework for analyzing diverse PDFs, from academic articles to clinical notes. Curate key literature and identify tools to make PDFs accessible and useful.
14
+
15
+ 2. ๐Ÿ“– Background and Literature Review
16
+
17
+ 2.1 ๐Ÿ•ฐ๏ธ Evolution of PDFs
18
+ Since the 1990s, PDFs have ensured document fidelity across platforms, becoming the standard for archiving content. This section explores their history and machine-readability challenges.
19
+
20
+ 2.2 ๐Ÿค– Knowledge Engineering and Document Analysis
21
+ AI/ML has evolved from text extraction to semantic understanding, addressing scanned images, layouts, and knowledge graphs.
22
+
23
+ 2.3 ๐Ÿ”— Existing Resources
24
+ - Archive.org: Scanned books, historical documents, diverse PDFs.
25
+ - Link: [Visit Archive.org](https://archive.org)
26
+ - Arxiv.org: Pre-prints of AI research.
27
+ - Link: [Visit Arxiv.org](https://arxiv.org)
28
+ - Hugging Face Datasets and Models: Datasets and pre-trained models for AI tasks.
29
+ - Link: [Explore Hugging Face](https://huggingface.co)
30
+
31
+ 3. โ“ Research Objectives and Questions
32
+
33
+ 3.1 ๐Ÿ“‹ Primary Questions
34
+ 1. How can AI/ML (Transformers, GNNs, multimodal models) extract meaningful knowledge from PDFs beyond raw text?
35
+ 2. What approaches handle diverse PDFs (science papers, clinical notes, digitized books)? Can one model address all types?
36
+
37
+ 3.2 ๐Ÿ“ˆ Secondary Goals
38
+ - Evaluate PDF parsing and layout analysis models for robustness.
39
+ - Address combining diverse PDF datasets effectively.
40
+
41
+ 3.3 ๐Ÿ” Scope
42
+ Includes scholarly papers, clinical documents (e.g., discharge summaries, nursing notes), book chapters, and historical archives.
43
+
44
+ 4. ๐Ÿ› ๏ธ Methodology
45
+
46
+ 4.1 ๐Ÿ“ฅ Data Collection & Sources
47
+ - Datasets: Hugging Face (see Section 6.1), Archive.org, Arxiv.org, open-source clinical datasets (e.g., MIMIC, PMC OA).
48
+ - Document Types: Research papers, clinical notes, digitized books.
49
+
50
+ 4.2 ๐Ÿงน Preprocessing
51
+ - OCR & Layout Analysis: Transformer-based vision models to handle columns, headers, footers, figures, tables.
52
+ - Semantic Segmentation: Deep learning to identify text roles (title, abstract, clinical finding, dosage).
53
+
54
+ 4.3 ๐Ÿง  Modeling and Analysis
55
+ - Transformer Architectures: LayoutLM, Donut, fine-tuned LLMs (e.g., Llama, Flan-T5) for document tasks.
56
+ - Clinical Focus: BioBERT, ClinicalBERT for medical text processing (NER, summarization).
57
+ - Comparative Evaluation: Benchmark models on layout accuracy, clinical entity extraction.
58
+
59
+ 4.4 ๐Ÿ“Š Evaluation Metrics
60
+ - Extraction: Accuracy, Precision, Recall, F1-score for layout, text, tables, NER.
61
+ - Summarization: ROUGE, BLEU scores; human evaluation for clinical insights.
62
+ - Usability: Ease of using extracted data for applications (e.g., quiz generation).
63
+
64
+ 5. ๐Ÿ“ฐ Top Arxiv Papers in Knowledge Engineering for PDFs
65
+
66
+ This section lists influential papers. Note: The field evolves quickly.
67
+
68
+ - 1. ๐Ÿ“„ LayoutLM: Pre-training of Text and Layout for Document Image Understanding
69
+ - Insight: Pioneered combining text and layout in pre-training, boosting document AI tasks. A must-read.
70
+ - arXiv: [arXiv:1912.13318](https://arxiv.org/abs/1912.13318)
71
+ - PDF: [PDF](https://arxiv.org/pdf/1912.13318.pdf)
72
+ - 2. ๐Ÿ“„ LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking
73
+ - Insight: Enhanced LayoutLM with unified masking and better image integration. State-of-the-art for a time.
74
+ - arXiv: [arXiv:2204.08387](https://arxiv.org/abs/2204.08387)
75
+ - PDF: [PDF](https://arxiv.org/pdf/2204.08387.pdf)
76
+ - 3. ๐Ÿ“„ Donut: Document Understanding Transformer without OCR
77
+ - Insight: End-to-end image-to-text, skipping traditional OCR. Innovative approach.
78
+ - arXiv: [arXiv:2111.15664](https://arxiv.org/abs/2111.15664)
79
+ - PDF: [PDF](https://arxiv.org/pdf/2111.15664.pdf)
80
+ - 4. ๐Ÿ“„ GROBID: Combining Automatic Bibliographical Data Recognition and Terminology Extraction
81
+ - Insight: A reliable tool for parsing scientific PDFs (headers, references). Practical and widely used.
82
+ - arXiv: [arXiv:0905.4028](https://arxiv.org/abs/0905.4028)
83
+ - PDF: [PDF](https://arxiv.org/pdf/0905.4028.pdf)
84
+ - 5. ๐Ÿ“„ Deep Learning for Table Detection and Structure Recognition: A Survey
85
+ - Insight: Covers challenges of table extraction in PDFs, crucial for complex documents.
86
+ - arXiv: [arXiv:2105.07618](https://arxiv.org/abs/2105.07618)
87
+ - PDF: [PDF](https://arxiv.org/pdf/2105.07618.pdf)
88
+ - 6. ๐Ÿ“„ A Survey on Deep Learning for Named Entity Recognition
89
+ - Insight: NER is key for extracting meaning (e.g., drugs, symptoms) from PDFs. Comprehensive overview.
90
+ - arXiv: [arXiv:1812.09449](https://arxiv.org/abs/1812.09449)
91
+ - PDF: [PDF](https://arxiv.org/pdf/1812.09449.pdf)
92
+ - 7. ๐Ÿ“„ BioBERT: a pre-trained biomedical language representation model for biomedical text mining
93
+ - Insight: Domain-specific model for clinical NER and text mining, vital for medical PDFs.
94
+ - arXiv: [arXiv:1901.08746](https://arxiv.org/abs/1901.08746)
95
+ - PDF: [PDF](https://arxiv.org/pdf/1901.08746.pdf)
96
+ - 8. ๐Ÿ“„ DocBank: A Benchmark Dataset for Document Layout Analysis
97
+ - Insight: Provides layout annotations from arXiv LaTeX sources, great for training models.
98
+ - arXiv: [arXiv:2006.01038](https://arxiv.org/abs/2006.01038)
99
+ - PDF: [PDF](https://arxiv.org/pdf/2006.01038.pdf)
100
+ - 9. ๐Ÿ“„ Clinical Text Summarization: Adapting Large Language Models
101
+ - Insight: Shows LLMs can summarize clinical notes (e.g., from MIMIC), relevant for medical PDFs.
102
+ - arXiv: [arXiv:2307.00401](https://arxiv.org/abs/2307.00401)
103
+ - PDF: [PDF](https://arxiv.org/pdf/2307.00401.pdf)
104
+ - 10. ๐Ÿ“„ PubLayNet: Largest dataset ever for document layout analysis
105
+ - Insight: Massive dataset from PubMed Central, ideal for testing model robustness.
106
+ - arXiv: [arXiv:1908.07836](https://arxiv.org/abs/1908.07836)
107
+ - PDF: [PDF](https://arxiv.org/pdf/1908.07836.pdf)
108
+
109
+ *Disclaimer: Always verify arXiv links and versions, as updates are frequent.*
110
+
111
+ 6. ๐Ÿ’พ PDF Datasets and Data Sources
112
+
113
+ 6.1 ๐Ÿค— Hugging Face Datasets
114
+ - cais/hle: Focuses on high-level elements in scientific documents.
115
+ - Link: [https://huggingface.co/datasets/cais/hle](https://huggingface.co/datasets/cais/hle)
116
+ - JohnLyu/cc_main_2024_51_links_pdf_url: Common Crawl URLs, diverse but messy.
117
+ - Link: [https://huggingface.co/datasets/JohnLyu/cc_main_2024_51_links_pdf_url](https://huggingface.co/datasets/JohnLyu/cc_main_2024_51_links_pdf_url)
118
+ - mlfoundations/MINT-1T-PDF-CC-2024-10: Large-scale Common Crawl PDF collection.
119
+ - Link: [https://huggingface.co/datasets/mlfoundations/MINT-1T-PDF-CC-2024-10](https://huggingface.co/datasets/mlfoundations/MINT-1T-PDF-CC-2024-10)
120
+ - ranWang/un_pdf_data_urls_set: UN PDFs, potentially multilingual and formal.
121
+ - Link: [https://huggingface.co/datasets/ranWang/un_pdf_data_urls_set](https://huggingface.co/datasets/ranWang/un_pdf_data_urls_set)
122
+ - Wikit/pdf-parsing-bench-results: Benchmark results, useful for comparisons.
123
+ - Link: [https://huggingface.co/datasets/Wikit/pdf-parsing-bench-results](https://huggingface.co/datasets/Wikit/pdf-parsing-bench-results)
124
+ - pixparse/pdfa-eng-wds: PDF/A format, possibly cleaner layouts.
125
+ - Link: [https://huggingface.co/datasets/pixparse/pdfa-eng-wds](https://huggingface.co/datasets/pixparse/pdfa-eng-wds)
126
+
127
+ 6.2 ๐Ÿฉบ Clinical/Medical Datasets
128
+ - MIMIC-III/MIMIC-IV (PhysioNet): De-identified ICU data with discharge summaries, nursing notes. Requires access.
129
+ - Link: [Visit PhysioNet](https://physionet.org/content/mimiciv/)
130
+ - PubMed Central Open Access (PMC OA): Biomedical literature, many PDFs.
131
+ - Link: [Access PMC OA](https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/)
132
+ - CORD-19: COVID-19 papers, many in PDF format.
133
+ - ClinicalTrials.gov: Links to trial protocols, results in PDFs.
134
+ - Government Reports: WHO, CDC, NIH PDFs with health data, guidelines.
135
+ - Open-Source Nursing Notes: Rare due to privacy (HIPAA). Consider research papers, institutional collaboration, or synthetic data.
136
+
137
+ 6.3 ๐Ÿงฉ Integration Strategy
138
+ 1. Identify Task: Layout analysis, clinical NER, or summarization.
139
+ 2. Select Data: DocBank/PubLayNet for layout, MIMIC/PMC for clinical.
140
+ 3. Harmonize Labels: Map annotation schemes.
141
+ 4. Weighted Sampling: Prioritize rare data (e.g., clinical notes).
142
+ 5. Domain Adaptation: Fine-tune general models on specific domains.
143
+ 6. Data Augmentation: Add noise, rotate images, or use text synonyms.
144
+
145
+ 7. ๐Ÿ”ง PDF Models and Tools
146
+
147
+ 7.1 ๐Ÿ› ๏ธ Models
148
+ - Layout Analysis:
149
+ - LayoutLM/LayoutLMv2/LayoutLMv3 (Microsoft): Transformers for document understanding.
150
+ - Donut (Naver): OCR-free document processing.
151
+ - GROBID: Strong for scientific PDFs.
152
+ - HURIDOCS/pdf-document-layout-analysis: Worth exploring.
153
+ - Tesseract OCR/EasyOCR: Core OCR tools.
154
+ - PyMuPDF/PDFMiner.six: Low-level PDF extraction libraries.
155
+ - Quiz Generation:
156
+ - fbellame/llama2-pdf-to-quizz-13b: LLM for interactive tasks.
157
+ - Content Processing:
158
+ - vikp/pdf_postprocessor_t5: Cleans extracted text.
159
+ - BioBERT/ClinicalBERT: Medical text NER, extraction.
160
+ - General LLMs: Summarize or query extracted text.
161
+ - Toolkits:
162
+ - opendatalab/PDF-Extract-Kit: Multi-tool bundle.
163
+ - Spark OCR (John Snow Labs): Scalable, commercial.
164
+
165
+ 7.2 ๐Ÿ“ Evaluation
166
+ - Accuracy: Benchmark layout, extraction tasks.
167
+ - Speed/Scalability: Handle small or large PDF sets.
168
+ - Domain Specificity: Performance on medical or complex layouts.
169
+ - Resources: GPU needs vs. lightweight options.
170
+ - Ease of Use: Accessibility for integration.
171
+
172
+ 8. ๐ŸŒ PDF Adjacent Resources and Global Perspectives
173
+
174
+ 8.1 ๐Ÿ”— Platforms
175
+ - lastexam.ai: Converts PDFs to exam prep, showing application potential.
176
+ - Annotation Tools: Label Studio, Doccano for custom data labeling.
177
+ - Knowledge Graphs: Neo4j, RDFLib to store extracted data.
178
+
179
+ 8.2 ๐Ÿ’ก Insights
180
+ - Knowledge flows dynamically, requiring adaptable methods.
181
+ - Goal: Improve science access, patient care, history preservation beyond metrics.
182
+
183
+ 9. ๐Ÿ’ฌ Discussion and Future Work
184
+
185
+ 9.1 ๐Ÿ“ Synthesis
186
+ Bridge messy PDFs to structured knowledge using AI, enabling applications like quizzes or clinical support, especially in medicine.
187
+
188
+ 9.2 โš ๏ธ Challenges
189
+ - Data Heterogeneity: Scanned vs. digital, varied layouts.
190
+ - Clinical Data Scarcity: Privacy limits access.
191
+ - Layout Issues: Tables, figures disrupt parsing.
192
+ - Semantic Ambiguity: Clinical notes with typos, abbreviations.
193
+ - Scalability: Processing millions of PDFs.
194
+ - Evaluation: Validating clinical insights.
195
+
196
+ 9.3 ๐Ÿš€ Future Directions
197
+ - Multimodal Models: Integrate text, layout, images.
198
+ - LLMs for Structure: Output JSON directly from PDFs.
199
+ - Explainable AI: Build trust in medical applications.
200
+ - Human-in-the-Loop: Combine AI and human verification.
201
+ - Few-Shot Learning: Adapt to new layouts with less data.
202
+ - Synthetic Data: Generate realistic clinical datasets.
203
+
204
+ 10. ๐Ÿ Conclusion
205
+
206
+ 10.1 ๐Ÿ“‹ Recap
207
+ From PDF history to AI-driven understanding, we aim to unlock knowledge using robust methods and datasets, enhancing learning and healthcare.
208
+
209
+ 10.2 ๐ŸŒŸ Final Thoughts
210
+ Continue with accurate OCR, clear layouts, and converging models. Every parsed PDF advances human-AI knowledge dialogue.
211
+
212
+ 11. ๐Ÿ“š References and Further Reading
213
+
214
+ - Archive.org: Historical documents.
215
+ - Link: [Archive.org](https://archive.org)
216
+ - Arxiv.org: AI/ML pre-prints.
217
+ - Link: [Arxiv.org](https://arxiv.org)
218
+ - Hugging Face: Datasets, models.
219
+ - Link: [Hugging Face](https://huggingface.co)
220
+ - PhysioNet: MIMIC clinical data.
221
+ - Link: [PhysioNet](https://physionet.org)
222
+ - PubMed Central: Biomedical literature.
223
+ - Link: [PubMed Central (PMC)](https://www.ncbi.nlm.nih.gov/pmc/)
224
+ - Papers from Section 5.
225
+ - Surveys on Document AI, NER, Table Extraction, Clinical NLP.
226
+ - Documentation for LayoutLM, Donut, GROBID, Tesseract, PyMuPDF.