import streamlit as st
import json
urls = [
"https://huggingface.co/spaces/awacke1/CB-GR-Chatbot-Blenderbot",
"https://huggingface.co/spaces/awacke1/TTS-STT-Blocks",
"https://huggingface.co/spaces/awacke1/Prompt-Refinery-Text-to-Image-Generation",
"https://huggingface.co/spaces/awacke1/Video-Summary",
"https://huggingface.co/spaces/awacke1/AI-MovieMaker-Comedy",
"https://huggingface.co/spaces/awacke1/ChatGPT-Memory-Chat-Story-Generator",
"https://huggingface.co/spaces/awacke1/CloneAnyVoice",
"https://huggingface.co/spaces/awacke1/ChatGPT-Streamlit-2",
"https://huggingface.co/spaces/awacke1/WikipediaUltimateAISearch",
"https://huggingface.co/spaces/awacke1/RLHF.Cognitive.Episodic.Semantic.Memory",
"https://huggingface.co/spaces/awacke1/Memory-Shared",
"https://huggingface.co/spaces/awacke1/VideoSwap",
"https://huggingface.co/spaces/awacke1/AI-Wikipedia-Search",
"https://huggingface.co/spaces/awacke1/AutoMLUsingStreamlit-Plotly",
"https://huggingface.co/spaces/awacke1/NLP-Lyric-Chorus-Image",
"https://huggingface.co/spaces/awacke1/OpenAssistant-Chatbot-FTW-Open-Source",
"https://huggingface.co/spaces/awacke1/ChatGPTStreamlit7",
"https://huggingface.co/spaces/awacke1/MultiPDF-QA-ChatGPT-Langchain",
"https://huggingface.co/spaces/awacke1/SOTA-Plan",
"https://huggingface.co/spaces/awacke1/AIandSmartTools",
"https://huggingface.co/spaces/awacke1/3DVirtualFood",
"https://huggingface.co/spaces/awacke1/Gradio-Gallery-Health-Medical-Icon-Sets",
"https://huggingface.co/spaces/awacke1/DatasetAnalyzer",
"https://huggingface.co/spaces/awacke1/PrompTart",
"https://huggingface.co/spaces/awacke1/sileod-deberta-v3-base-tasksource-nli",
"https://huggingface.co/spaces/awacke1/File-Memory-Operations-Human-Feedback-Gradio",
"https://huggingface.co/spaces/awacke1/Bloom.Big.Science.Continual.Generator",
"https://huggingface.co/spaces/awacke1/Ontology-Gradio",
"https://huggingface.co/spaces/awacke1/HTML5-Aframe-3dMap-Flight",
"https://huggingface.co/spaces/awacke1/Bloom.Generative.Writer",
"https://huggingface.co/spaces/awacke1/Voice-ChatGPT-Streamlit-12",
"https://huggingface.co/spaces/awacke1/HTML5-AR-VR",
"https://huggingface.co/spaces/awacke1/AnimationAI",
"https://huggingface.co/spaces/awacke1/GenerativeWordsandImages",
"https://huggingface.co/spaces/awacke1/AR-VR-IOT-Demo",
"https://huggingface.co/spaces/awacke1/ArtStyleFoodsandNutrition",
"https://huggingface.co/spaces/awacke1/CarePlanQnAWithContext",
"https://huggingface.co/spaces/awacke1/VideoSummaryYoutube3",
"https://huggingface.co/spaces/awacke1/AW-01ST-CSV-Dataset-Analyzer",
"https://huggingface.co/spaces/awacke1/Try.Playing.Learning.Sharing.On.This",
"https://huggingface.co/spaces/awacke1/google-flan-t5-base",
"https://huggingface.co/spaces/awacke1/PubMed-Parrot-Paraphraser-on-T5",
"https://huggingface.co/spaces/awacke1/Writing-Grammar-And-Paraphrase-w-Pegasus",
"https://huggingface.co/spaces/awacke1/runwayml-stable-diffusion-v1-5",
"https://huggingface.co/spaces/awacke1/DockerGoFlanT5",
"https://huggingface.co/spaces/awacke1/GradioContinualGenerator",
"https://huggingface.co/spaces/awacke1/StreamlitSuperPowerCheatSheet"
]
# Extract the last part of each URL (after the last '/') to serve as the name of the button
url_names = [url.split('/')[-1] for url in urls]
# Associate each URL with a relevant emoji based on keywords in its name
emoji_mapping = {
"Chatbot": "🤖",
"TTS": "🗣️",
"STT": "👂",
"Video": "🎥",
"MovieMaker": "🍿",
"ChatGPT": "💬",
"Voice": "🎙️",
"Wikipedia": "📖",
"Memory": "🧠",
"AI": "🧠",
"OpenAssistant": "🤝",
"3D": "🕶️",
"AR": "👓",
"VR": "🕶️",
"Animation": "🖌️",
"Dataset": "📊",
"Gradio": "📻",
"HTML5": "🌐",
"Writing": "✍️",
"Grammar": "🖋️",
"Paraphrase": "🔄",
"Streamlit": "🌠"
}
# Map each URL name to its most relevant emoji
url_emojis = []
for name in url_names:
associated_emoji = "🔗" # Default emoji
for keyword, emoji in emoji_mapping.items():
if keyword in name:
associated_emoji = emoji
break
url_emojis.append(associated_emoji)
#url_emojis[:5], url_names[:5] # Display the first 5 URL names with their associated emojis
import streamlit as st
import json
import webbrowser
# Function to load the history of clicks from the text file
def load_history():
try:
with open("click_history.txt", "r") as f:
return json.load(f)
except FileNotFoundError:
return {url: 0 for url in urls}
# Function to save the updated history of clicks to the text file
def save_history(history):
with open("click_history.txt", "w") as f:
json.dump(history, f)
# Load the history of clicks
history = load_history()
# Display the buttons for each URL
for url, name, emoji in zip(urls, url_names, url_emojis):
if st.button(f"{emoji} {name}"):
# Open the URL in a new browser tab using JavaScript
st.write('', unsafe_allow_html=True)
# Update the history of clicks
history[url] += 1
save_history(history)
# Display the number of times the URL was opened below its corresponding button
st.write(f"Clicked: {history[url]} times")
import time
from bokeh.plotting import figure
from bokeh.models import ColumnDataSource
# ... [rest of the initial code remains unchanged] ...
# Streamlit app
def main():
# Session state to hold the value of AutoRepeat button across reruns
if "auto_repeat" not in st.session_state:
st.session_state.auto_repeat = "On"
if "current_index" not in st.session_state:
st.session_state.current_index = 0 # Use 0 as a default index
# Load the history of clicks
history = load_history()
# Display the buttons for each URL
for url, name, emoji in zip(urls, url_names, url_emojis):
#if st.button(f"{emoji} {name}"):
if st.button(f"{emoji} {name}", key=url): # using the URL as the unique key
# Open the URL in a new browser tab using JavaScript
st.write('', unsafe_allow_html=True)
# Update the history of clicks
history[url] += 1
save_history(history)
# Display the number of times the URL was opened below its corresponding button
st.write(f"Clicked: {history[url]} times")
# Function to load the history of clicks from the text file
def load_history():
try:
with open("click_history.txt", "r") as f:
return json.load(f)
except FileNotFoundError:
return {url: 0 for url in urls}
# Function to save the updated history of clicks to the text file
def save_history(history):
with open("click_history.txt", "w") as f:
json.dump(history, f)
# Streamlit app
def main():
# Load the history of clicks
history = load_history()
# Create a list of URLs with their associated names, emojis, and click counts
url_data = [{'url': url, 'name': name, 'emoji': emoji, 'clicks': history[url]}
for url, name, emoji in zip(urls, url_names, url_emojis)]
# Sort the list by click counts in descending order
url_data.sort(key=lambda x: x['clicks'], reverse=True)
# Display the sorted URLs in columns up to four columns wide
num_cols = min(4, len(url_data))
cols = st.columns(num_cols)
for i, data in enumerate(url_data):
col = cols[i % num_cols]
with col:
try: # and figure out a solution to the duplicate key problem ;)
if st.button(f"{emoji} {name}", key=url): # using the URL as the unique key
# Open the URL in a new browser tab using JavaScript
st.write('', unsafe_allow_html=True)
# Update the history of clicks
history[data['url']] += 1
save_history(history)
except:
st.write('Keep Trying ;)')
# Display the number of times the URL was opened below its corresponding button
st.write(f"Clicked: {history[data['url']]} times")
if __name__ == "__main__":
main()
# Timer logic
if st.session_state.auto_repeat == "On":
timer_placeholder = st.empty()
for i in range(10, 0, -1):
timer_placeholder.text(f"Reloading in {i} seconds...")
time.sleep(1)
history = load_history() # Reload the history after the countdown
# Display the Bokeh graph showing the click counts
non_zero_urls = [name for url, name in zip(urls, url_names) if history[url] > 0]
non_zero_counts = [history[url] for url in urls if history[url] > 0]
source = ColumnDataSource(data=dict(urls=non_zero_urls, counts=non_zero_counts))
p = figure(x_range=non_zero_urls, plot_height=350, title="Click Counts per URL",
toolbar_location=None, tools="")
p.vbar(x='urls', top='counts', width=0.9, source=source)
p.xaxis.major_label_orientation = 1.2
st.bokeh_chart(p)