File size: 4,949 Bytes
b820e2b
 
 
 
0e008da
b820e2b
 
 
 
0e008da
b820e2b
 
 
 
0e008da
b820e2b
 
 
 
0e008da
b820e2b
 
 
 
0e008da
b820e2b
 
 
 
0e008da
b820e2b
 
 
 
0e008da
b820e2b
 
 
 
0e008da
b820e2b
 
 
 
 
d5da4a8
 
b820e2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e008da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b820e2b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import streamlit as st

def triage_checkin():
    st.write("### Triage and Check-in Expert ๐Ÿš‘")
    for i in range(1, 4):
        st.text_input(f"Question {i} for Triage")

def lab_analyst():
    st.write("### Lab Analyst ๐Ÿงช")
    for i in range(1, 4):
        st.text_input(f"Question {i} for Lab Analysis")

def medicine_specialist():
    st.write("### Medicine Specialist ๐Ÿ’Š")
    for i in range(1, 4):
        st.text_input(f"Question {i} for Medicine")

def service_expert():
    st.write("### Service Expert ๐Ÿ’ฒ")
    for i in range(1, 4):
        st.text_input(f"Question {i} for Service")

def care_expert():
    st.write("### Level of Care Expert ๐Ÿฅ")
    for i in range(1, 4):
        st.text_input(f"Question {i} for Level of Care")

def terminology_expert():
    st.write("### Terminology Expert ๐Ÿ“š")
    for i in range(1, 4):
        st.text_input(f"Question {i} for Terminology")

def cmo():
    st.write("### Chief Medical Officer ๐Ÿฉบ")
    for i in range(1, 4):
        st.text_input(f"Question {i} for CMO")

def medical_director():
    st.write("### Medical Director Team ๐Ÿข")
    for i in range(1, 4):
        st.text_input(f"Question {i} for Medical Director")

def main():
    st.title("Mixture of Medical Experts Model")
    st.write("Harness the power of AI with this specialized healthcare framework! ๐ŸŽ‰")
    st.write("#### In LLM Multi System Agents, we define a set of eight roles for achieving a mission, then benchmark performance across LLMs to find datasets with need alignment.")
    st.markdown("#### MTBench: https://huggingface.co/spaces/awacke1/MTBenchmarkForChatGPTMetricsScoring")

    role = st.selectbox("Select AI Role:", [
        "Triage and Check-in Expert",
        "Lab Analyst",
        "Medicine Specialist",
        "Service Expert",
        "Level of Care Expert",
        "Terminology Expert",
        "Chief Medical Officer",
        "Medical Director Team"
    ])

    if role == "Triage and Check-in Expert":
        triage_checkin()
    elif role == "Lab Analyst":
        lab_analyst()
    elif role == "Medicine Specialist":
        medicine_specialist()
    elif role == "Service Expert":
        service_expert()
    elif role == "Level of Care Expert":
        care_expert()
    elif role == "Terminology Expert":
        terminology_expert()
    elif role == "Chief Medical Officer":
        cmo()
    elif role == "Medical Director Team":
        medical_director()
    
    # Define Roles and their Descriptions
    roles = {
        "1. Coder": "๐Ÿ’ป Creates short python code functions to solve tasks.",
        "2. Humanities Expert": "๐Ÿ“š Focuses on arts, literature, history, and other humanities subjects.",
        "3. Analyst": "๐Ÿค” Analyzes situations and provides logical solutions.",
        "4. Roleplay Expert": "๐ŸŽญ Specialized in mimicking behaviors or characters.",
        "5. Mathematician": "โž— Solves mathematical problems with precision.",
        "6. STEM Expert": "๐Ÿ”ฌ Specialized in Science, Technology, Engineering, and Mathematics tasks.",
        "7. Extraction Expert": "๐Ÿ” Strictly sticks to facts and extracts concise information.",
        "8. Drafter": "๐Ÿ“ Exhibits expertise in generating textual content and narratives.",
    }
    
    # Streamlit UI
    st.title("AI Role Selector - CHARMSED ๐Ÿค–โœจ")
    st.markdown("""
    ### Harness the power of AI with the CHARMSED framework. 
    #### This suite of roles brings together a comprehensive set of AI capabilities, tailored for diverse tasks:
    - **C**oder ๐Ÿ’ป: Craft pythonic solutions with precision.
    - **H**umanities Expert ๐Ÿ“š: Dive deep into arts, literature, and history.
    - **A**nalyst ๐Ÿค”: Derive insights through logical reasoning.
    - **R**oleplay Expert ๐ŸŽญ: Mimic behaviors or adopt personas for engaging interactions.
    - **M**athematician โž—: Crunch numbers and solve mathematical enigmas.
    - **S**TEM Expert ๐Ÿ”ฌ: Navigate through the realms of Science, Technology, Engineering, and Mathematics.
    - **E**xtraction Expert ๐Ÿ”: Extract concise information with a laser-focus.
    - **D**rafter ๐Ÿ“: Generate textual content and narratives with flair.
    Empower your tasks with the perfect AI role and unleash the magic of CHARMSED!
    """)
    
    # Dropdown to select role
    selected_role = st.selectbox("Select AI Role:", list(roles.keys()))
    
    # Display the description of the selected role
    st.write(roles[selected_role])
    
    # Switch to choose between two models
    model = st.radio("Choose Model:", ["model_1", "model_2"])
    
    # Text area for user input
    user_input = st.text_area("Provide your task/question:")
    
    # Button to execute
    if st.button("Execute"):
        # Here, you would add code to get the AI response based on the selected role and model.
        # For now, just echoing the user input.
        st.write(f"You said: {user_input}")

if __name__ == "__main__":
    main()