File size: 10,190 Bytes
26c58b2
 
 
607046c
26c58b2
 
 
 
 
 
 
 
 
607046c
26c58b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
607046c
 
 
 
26c58b2
 
607046c
26c58b2
 
 
 
 
 
3dd5173
 
 
 
26c58b2
 
3dd5173
26c58b2
3dd5173
 
26c58b2
 
3dd5173
 
26c58b2
 
3dd5173
26c58b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
607046c
26c58b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
607046c
26c58b2
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from huggingface_hub import InferenceClient
import gradio as gr

client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.1")

def format_prompt(message, history):
  prompt = "<s>"
  for user_prompt, bot_response in history:
    prompt += f"[INST] {user_prompt} [/INST]"
    prompt += f" {bot_response}</s> "
  prompt += f"[INST] {message} [/INST]"
  return prompt

def generate(prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,):
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)
    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )
    formatted_prompt = format_prompt(prompt, history)
    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""
    for response in stream:
        output += response.token.text
        yield output
    return output

additional_inputs=[
    gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs",),
    gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=1048, step=64, interactive=True, info="The maximum numbers of new tokens",),
    gr.Slider(label="Top-p (nucleus sampling)",value=0.90,minimum=0.0,maximum=1,step=0.05,interactive=True,info="Higher values sample more low-probability tokens",),
    gr.Slider(label="Repetition penalty",value=1.2,minimum=1.0,maximum=2.0,step=0.05,interactive=True,info="Penalize repeated tokens",)
]

css = """#mkd {height: 200px; overflow: auto; border: 1px solid #ccc;}"""
with gr.Blocks(css=css) as demo:
    gr.ChatInterface(
        generate,
        additional_inputs=additional_inputs,       
        examples = [
            ["🐍 Write a Python Streamlit program that shows a thumbs up and thumbs down button for scoring an evaluation. When the user clicks, maintain a saved text file that tracks and shows the number of clicks with a refresh and sorts responses by the number of clicks."],
            ["🐍 Write a Python Gradio program that shows a thumbs up and thumbs down button for scoring an evaluation. When the user clicks, maintain a saved text file that tracks and shows the number of clicks with a refresh and sorts responses by the number of clicks."],
            ["πŸ“Š Write a Python Streamlit program that creates a Pandas DataFrame and display it using Streamlit. Use emojis to indicate the status of each row (e.g., βœ… for good, ❌ for bad)."],
            ["πŸ“Š Write a Python Gradio program that creates a Pandas DataFrame and display it using Streamlit. Use emojis to indicate the status of each row (e.g., βœ… for good, ❌ for bad)."],
            ["πŸ—‚ Using Streamlit, create a simple interface where users can upload a CSV file and filter the data based on selected columns."],
            ["πŸ—‚ Using Gradio, create a simple interface where users can upload a CSV file and filter the data based on selected columns."],
            ["πŸ˜ƒ Implement emoji reactions in a Streamlit app. When a user clicks on an emoji, record the click count in a Pandas DataFrame and display the DataFrame."],
            ["πŸ˜ƒ Implement emoji reactions in a Gradio app. When a user clicks on an emoji, record the click count in a Pandas DataFrame and display the DataFrame."],
            ["πŸ”— Create a program that fetches a dataset from Huggingface Hub and shows basic statistics about it using Pandas in a Streamlit app."],
            ["πŸ”— Create a program that fetches a dataset from Huggingface Hub and shows basic statistics about it using Pandas in a Gradio app."],
            ["πŸ€– Use Streamlit to create a user interface for a text summarizer model from Huggingface Hub."],
            ["πŸ€– Use Gradio to create a user interface for a text summarizer model from Huggingface Hub."],
            ["πŸ“ˆ Create a Streamlit app to visualize time series data. Use Pandas to manipulate the data and plot it using Streamlit’s native plotting options."],
            ["πŸ“ˆ Create a Gradio app to visualize time series data. Use Pandas to manipulate the data and plot it using Streamlit’s native plotting options."],
            ["πŸŽ™ Implement a voice-activated feature in a Streamlit interface. Use a pre-trained model from Huggingface Hub for speech recognition."],
            ["πŸŽ™ Implement a voice-activated feature in a Gradio interface. Use a pre-trained model from Huggingface Hub for speech recognition."],
            ["πŸ” Create a search function in a Streamlit app that filters through a Pandas DataFrame and displays the results."],
            ["πŸ” Create a search function in a Gradio app that filters through a Pandas DataFrame and displays the results."],
            ["πŸ€— Write a Python script that uploads a model to Huggingface Hub and then uses it in a Streamlit app."],
            ["πŸ‘ Create a Gradio interface for a clapping hands emoji (πŸ‘) counter. When a user inputs a text, the interface should return the number of clapping hands emojis in the text."],
            ["πŸ“œ Use Pandas to read an Excel sheet in a Streamlit app. Allow the user to select which sheet they want to view."],
            ["πŸ”’ Implement a login screen in a Streamlit app using Python. Secure the login by hashing the password."],
            ["🀩 Create a Gradio interface that uses a model from Huggingface Hub to generate creative text based on a user’s input. Add sliders for controlling temperature and other hyperparameters."]
        ]
    )
    gr.HTML("""<h2>πŸ€– Mistral Chat - Gradio πŸ€–</h2>
        In this demo, you can chat with <a href='https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1'>Mistral-7B-Instruct</a> model. πŸ’¬
        Learn more about the model <a href='https://huggingface.co/docs/transformers/main/model_doc/mistral'>here</a>. πŸ“š
        <h2>πŸ›  Model Features πŸ› </h2>
        <ul>
          <li>πŸͺŸ Sliding Window Attention with 128K tokens span</li>
          <li>πŸš€ GQA for faster inference</li>
          <li>πŸ“ Byte-fallback BPE tokenizer</li>
        </ul>
        <h3>πŸ“œ License πŸ“œ  Released under Apache 2.0 License</h3>
        <h3>πŸ“¦ Usage πŸ“¦</h3>
        <ul>
          <li>πŸ“š Available on Huggingface Hub</li>
          <li>🐍 Python code snippets for easy setup</li>
          <li>πŸ“ˆ Expected speedups with Flash Attention 2</li>
        </ul>
    """)

    markdown="""
    | Feature | Description | Byline |
    |---------|-------------|--------|
    | πŸͺŸ Sliding Window Attention with 128K tokens span | Enables the model to have a larger context for each token. | Increases model's understanding of context, resulting in more coherent and contextually relevant outputs. |
    | πŸš€ GQA for faster inference | Graph Query Attention allows faster computation during inference. | Speeds up the model inference time without sacrificing too much on accuracy. |
    | πŸ“ Byte-fallback BPE tokenizer | Uses Byte Pair Encoding but can fall back to byte-level encoding. | Allows the tokenizer to handle a wider variety of input text while keeping token size manageable. |
    | πŸ“œ License | Released under Apache 2.0 License | Gives you a permissive free software license, allowing you freedom to use, modify, and distribute the code. |
    | πŸ“¦ Usage | | |
    | πŸ“š Available on Huggingface Hub | The model can be easily downloaded and set up from Huggingface. | Makes it easier to integrate the model into various projects. |
    | 🐍 Python code snippets for easy setup | Provides Python code snippets for quick and easy model setup. | Facilitates rapid development and deployment, especially useful for prototyping. |
    | πŸ“ˆ Expected speedups with Flash Attention 2 | Upcoming update expected to bring speed improvements. | Keep an eye out for this update to benefit from performance gains. |

# πŸ›  Model Features and More πŸ› 
## Features
- πŸͺŸ Sliding Window Attention with 128K tokens span  
  - **Byline**: Increases model's understanding of context, resulting in more coherent and contextually relevant outputs.
- πŸš€ GQA for faster inference  
  - **Byline**: Speeds up the model inference time without sacrificing too much on accuracy.
- πŸ“ Byte-fallback BPE tokenizer  
  - **Byline**: Allows the tokenizer to handle a wider variety of input text while keeping token size manageable.
- πŸ“œ License: Released under Apache 2.0 License  
  - **Byline**: Gives you a permissive free software license, allowing you freedom to use, modify, and distribute the code.
## Usage πŸ“¦
- πŸ“š Available on Huggingface Hub  
  - **Byline**: Makes it easier to integrate the model into various projects.
- 🐍 Python code snippets for easy setup  
  - **Byline**: Facilitates rapid development and deployment, especially useful for prototyping.
- πŸ“ˆ Expected speedups with Flash Attention 2  
  - **Byline**: Keep an eye out for this update to benefit from performance gains.
    """
    gr.Markdown(markdown)  
               
    def SpeechSynthesis(result):
        documentHTML5='''
        <!DOCTYPE html>
        <html>
        <head>
            <title>Read It Aloud</title>
            <script type="text/javascript">
                function readAloud() {
                    const text = document.getElementById("textArea").value;
                    const speech = new SpeechSynthesisUtterance(text);
                    window.speechSynthesis.speak(speech);
                }
            </script>
        </head>
        <body>
            <h1>πŸ”Š Read It Aloud</h1>
            <textarea id="textArea" rows="10" cols="80">
        '''
        documentHTML5 = documentHTML5 + result
        documentHTML5 = documentHTML5 + '''
            </textarea>
            <br>
            <button onclick="readAloud()">πŸ”Š Read Aloud</button>
        </body>
        </html>
        '''
        gr.HTML(documentHTML5)
        
    SpeechSynthesis(markdown)
    
demo.queue().launch(debug=True)