File size: 14,722 Bytes
d999fe5 2fc2f40 d999fe5 2fc2f40 811cdf9 d999fe5 2fc2f40 d999fe5 2fc2f40 d999fe5 2fc2f40 d999fe5 2fc2f40 d999fe5 2fc2f40 d791c5b d999fe5 2fc2f40 d791c5b 2fc2f40 d999fe5 811cdf9 d999fe5 2fc2f40 d999fe5 2fc2f40 d999fe5 d791c5b 2fc2f40 d791c5b 2fc2f40 d791c5b 2fc2f40 d791c5b 2fc2f40 d791c5b 2fc2f40 d791c5b 2fc2f40 d791c5b d999fe5 d791c5b d999fe5 2fc2f40 d791c5b 2fc2f40 d791c5b 2fc2f40 d791c5b 2fc2f40 d791c5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
#!/usr/bin/env python3
import os
import glob
import base64
import time
import shutil
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
from diffusers import StableDiffusionPipeline
from torch.utils.data import Dataset, DataLoader
import csv
import fitz
import requests
from PIL import Image
import cv2
import numpy as np
import logging
import asyncio
import aiofiles
from io import BytesIO
from dataclasses import dataclass
from typing import Optional, Tuple
import zipfile
import math
import random
import re
import gradio as gr
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
log_records = []
class LogCaptureHandler(logging.Handler):
def emit(self, record):
log_records.append(record)
logger.addHandler(LogCaptureHandler())
# Data Classes and Models (unchanged from your original code)
@dataclass
class ModelConfig:
name: str
base_model: str
size: str
domain: Optional[str] = None
model_type: str = "causal_lm"
@property
def model_path(self):
return f"models/{self.name}"
@dataclass
class DiffusionConfig:
name: str
base_model: str
size: str
domain: Optional[str] = None
@property
def model_path(self):
return f"diffusion_models/{self.name}"
class SFTDataset(Dataset):
def __init__(self, data, tokenizer, max_length=128):
self.data = data
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
prompt = self.data[idx]["prompt"]
response = self.data[idx]["response"]
full_text = f"{prompt} {response}"
full_encoding = self.tokenizer(full_text, max_length=self.max_length, padding="max_length", truncation=True, return_tensors="pt")
prompt_encoding = self.tokenizer(prompt, max_length=self.max_length, padding=False, truncation=True, return_tensors="pt")
input_ids = full_encoding["input_ids"].squeeze()
attention_mask = full_encoding["attention_mask"].squeeze()
labels = input_ids.clone()
prompt_len = prompt_encoding["input_ids"].shape[1]
if prompt_len < self.max_length:
labels[:prompt_len] = -100
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
class TinyUNet(nn.Module):
def __init__(self, in_channels=3, out_channels=3):
super(TinyUNet, self).__init__()
self.down1 = nn.Conv2d(in_channels, 32, 3, padding=1)
self.down2 = nn.Conv2d(32, 64, 3, padding=1, stride=2)
self.mid = nn.Conv2d(64, 128, 3, padding=1)
self.up1 = nn.ConvTranspose2d(128, 64, 3, stride=2, padding=1, output_padding=1)
self.up2 = nn.Conv2d(64 + 32, 32, 3, padding=1)
self.out = nn.Conv2d(32, out_channels, 3, padding=1)
self.time_embed = nn.Linear(1, 64)
def forward(self, x, t):
t_embed = F.relu(self.time_embed(t.unsqueeze(-1)))
t_embed = t_embed.view(t_embed.size(0), t_embed.size(1), 1, 1)
x1 = F.relu(self.down1(x))
x2 = F.relu(self.down2(x1))
x_mid = F.relu(self.mid(x2)) + t_embed
x_up1 = F.relu(self.up1(x_mid))
x_up2 = F.relu(self.up2(torch.cat([x_up1, x1], dim=1)))
return self.out(x_up2)
class TinyDiffusion:
def __init__(self, model, timesteps=100):
self.model = model
self.timesteps = timesteps
self.beta = torch.linspace(0.0001, 0.02, timesteps)
self.alpha = 1 - self.beta
self.alpha_cumprod = torch.cumprod(self.alpha, dim=0)
def train(self, images, epochs=50):
dataset = TinyDiffusionDataset(images)
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
optimizer = torch.optim.Adam(self.model.parameters(), lr=1e-4)
device = torch.device("cpu")
self.model.to(device)
for epoch in range(epochs):
total_loss = 0
for x in dataloader:
x = x.to(device)
t = torch.randint(0, self.timesteps, (x.size(0),), device=device).float()
noise = torch.randn_like(x)
alpha_t = self.alpha_cumprod[t.long()].view(-1, 1, 1, 1)
x_noisy = torch.sqrt(alpha_t) * x + torch.sqrt(1 - alpha_t) * noise
pred_noise = self.model(x_noisy, t)
loss = F.mse_loss(pred_noise, noise)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
logger.info(f"Epoch {epoch + 1}/{epochs}, Loss: {total_loss / len(dataloader):.4f}")
return self
def generate(self, size=(64, 64), steps=100):
device = torch.device("cpu")
x = torch.randn(1, 3, size[0], size[1], device=device)
for t in reversed(range(steps)):
t_tensor = torch.full((1,), t, device=device, dtype=torch.float32)
alpha_t = self.alpha_cumprod[t].view(-1, 1, 1, 1)
pred_noise = self.model(x, t_tensor)
x = (x - (1 - self.alpha[t]) / torch.sqrt(1 - alpha_t) * pred_noise) / torch.sqrt(self.alpha[t])
if t > 0:
x += torch.sqrt(self.beta[t]) * torch.randn_like(x)
x = torch.clamp(x * 255, 0, 255).byte()
return Image.fromarray(x.squeeze(0).permute(1, 2, 0).cpu().numpy())
class TinyDiffusionDataset(Dataset):
def __init__(self, images):
self.images = [torch.tensor(np.array(img.convert("RGB")).transpose(2, 0, 1), dtype=torch.float32) / 255.0 for img in images]
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
return self.images[idx]
class ModelBuilder:
def __init__(self):
self.config = None
self.model = None
self.tokenizer = None
self.sft_data = None
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
self.model = AutoModelForCausalLM.from_pretrained(model_path)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
if config:
self.config = config
self.model.to("cuda" if torch.cuda.is_available() else "cpu")
return self
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4):
self.sft_data = []
with open(csv_path, "r") as f:
reader = csv.DictReader(f)
for row in reader:
self.sft_data.append({"prompt": row["prompt"], "response": row["response"]})
dataset = SFTDataset(self.sft_data, self.tokenizer)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5)
self.model.train()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.to(device)
for epoch in range(epochs):
total_loss = 0
for batch in dataloader:
optimizer.zero_grad()
input_ids = batch["input_ids"].to(device)
attention_mask = batch["attention_mask"].to(device)
labels = batch["labels"].to(device)
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs.loss
loss.backward()
optimizer.step()
total_loss += loss.item()
logger.info(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
return self
def save_model(self, path: str):
os.makedirs(os.path.dirname(path), exist_ok=True)
self.model.save_pretrained(path)
self.tokenizer.save_pretrained(path)
def evaluate(self, prompt: str):
self.model.eval()
with torch.no_grad():
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
outputs = self.model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
class DiffusionBuilder:
def __init__(self):
self.config = None
self.pipeline = None
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu")
if config:
self.config = config
return self
def generate(self, prompt: str):
return self.pipeline(prompt, num_inference_steps=20).images[0]
# Utility Functions
def generate_filename(sequence, ext="png"):
timestamp = time.strftime("%d%m%Y%HM%S")
return f"{sequence}_{timestamp}.{ext}"
def pdf_url_to_filename(url):
safe_name = re.sub(r'[<>:"/\\|?*]', '_', url)
return f"{safe_name}.pdf"
def get_gallery_files(file_types=["png", "pdf"]):
return sorted(list(set([f for ext in file_types for f in glob.glob(f"*.{ext}")]))) # Deduplicate files
def download_pdf(url, output_path):
try:
response = requests.get(url, stream=True, timeout=10)
if response.status_code == 200:
with open(output_path, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
return True
except requests.RequestException as e:
logger.error(f"Failed to download {url}: {e}")
return False
async def process_pdf_snapshot(pdf_path, mode="single"):
doc = fitz.open(pdf_path)
output_files = []
if mode == "single":
page = doc[0]
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
output_file = generate_filename("single", "png")
pix.save(output_file)
output_files.append(output_file)
doc.close()
return output_files
# Gradio Interface Functions
def update_gallery(history):
all_files = get_gallery_files()
gallery_content = "\n".join([f"- {f}" for f in all_files[:5]])
history.append(f"Gallery updated: {len(all_files)} files")
return gallery_content, history
def camera_snap(image, history):
if image is not None:
filename = generate_filename("cam")
image.save(filename)
history.append(f"Snapshot saved: {filename}")
return f"Image saved as {filename}", history
return "No image captured", history
def download_pdfs(urls, history):
urls = urls.strip().split("\n")
downloaded = []
for url in urls:
if url:
output_path = pdf_url_to_filename(url)
if download_pdf(url, output_path):
downloaded.append(output_path)
history.append(f"Downloaded PDF: {output_path}")
return f"Downloaded {len(downloaded)} PDFs", history
def build_model(model_type, base_model, model_name, domain, history):
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=model_name, base_model=base_model, size="small", domain=domain)
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
builder.load_model(base_model, config)
builder.save_model(config.model_path)
history.append(f"Built {model_type} model: {model_name}")
return builder, f"Model saved to {config.model_path}", history
def test_model(builder, prompt, history):
if builder is None:
return "No model loaded", history
if isinstance(builder, ModelBuilder):
result = builder.evaluate(prompt)
history.append(f"Tested Causal LM: {prompt} -> {result}")
return result, history
elif isinstance(builder, DiffusionBuilder):
image = builder.generate(prompt)
output_file = generate_filename("diffusion_test")
image.save(output_file)
history.append(f"Tested Diffusion: {prompt} -> {output_file}")
return output_file, history
# Gradio UI
with gr.Blocks(title="AI Vision & SFT Titans π") as demo:
gr.Markdown("# AI Vision & SFT Titans π")
history = gr.State(value=[])
builder = gr.State(value=None)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## Captured Files π")
gallery_output = gr.Textbox(label="Gallery", lines=5)
gr.Button("Update Gallery").click(update_gallery, inputs=[history], outputs=[gallery_output, history])
with gr.Column(scale=3):
with gr.Tabs():
with gr.TabItem("Camera Snap π·"):
camera_input = gr.Image(type="pil", label="Take a Picture")
snap_output = gr.Textbox(label="Status")
gr.Button("Capture").click(camera_snap, inputs=[camera_input, history], outputs=[snap_output, history])
with gr.TabItem("Download PDFs π₯"):
url_input = gr.Textbox(label="Enter PDF URLs (one per line)", lines=5)
pdf_output = gr.Textbox(label="Status")
gr.Button("Download").click(download_pdfs, inputs=[url_input, history], outputs=[pdf_output, history])
with gr.TabItem("Build Titan π±"):
model_type = gr.Dropdown(["Causal LM", "Diffusion"], label="Model Type")
base_model = gr.Dropdown(
choices=["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type.value == "Causal LM" else ["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"],
label="Base Model"
)
model_name = gr.Textbox(label="Model Name", value=f"tiny-titan-{int(time.time())}")
domain = gr.Textbox(label="Domain", value="general")
build_output = gr.Textbox(label="Status")
gr.Button("Build").click(build_model, inputs=[model_type, base_model, model_name, domain, history], outputs=[builder, build_output, history])
with gr.TabItem("Test Titan π§ͺ"):
test_prompt = gr.Textbox(label="Test Prompt", value="What is AI?")
test_output = gr.Textbox(label="Result")
gr.Button("Test").click(test_model, inputs=[builder, test_prompt, history], outputs=[test_output, history])
with gr.Row():
gr.Markdown("## History π")
history_output = gr.Textbox(value="\n".join(history.value), label="History", lines=5, interactive=False)
demo.launch() |