import gradio as gr import edge_tts import asyncio import tempfile import os from huggingface_hub import InferenceClient import re from streaming_stt_nemo import Model import torch import random import pandas as pd from datetime import datetime import base64 import io import json default_lang = "en" engines = { default_lang: Model(default_lang) } def transcribe(audio): lang = "en" model = engines[lang] text = model.stt_file(audio)[0] return text HF_TOKEN = os.environ.get("HF_TOKEN", None) def client_fn(model): if "Mixtral" in model: return InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") elif "Llama 3" in model: return InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct") elif "Mistral" in model: return InferenceClient("mistralai/Mistral-7B-Instruct-v0.2") elif "Phi" in model: return InferenceClient("microsoft/Phi-3-mini-4k-instruct") else: return InferenceClient("microsoft/Phi-3-mini-4k-instruct") def randomize_seed_fn(seed: int) -> int: seed = random.randint(0, 999999) return seed system_instructions1 = """ [SYSTEM] Answer as Dr. Nova Quantum, a engineer, learning psychologist, memory expert, python programmer, romantic, gospel and poet writer scientist specializing in solving problems with code, method steps, outlines, song, and humorous wit. Your responses should reflect your vast knowledge and experience in cutting-edge technology and scientific advancements. Maintain a professional yet approachable demeanor, offering insights that blend theoretical concepts with practical applications. Your goal is to educate and inspire, making complex topics accessible without oversimplifying. Draw from your decades of research and innovation to provide nuanced, forward-thinking answers. Remember, you're not just sharing information, but guiding others towards a deeper understanding of our technological future. Keep conversations engaging, clear, and concise. Avoid unnecessary introductions and answer the user's questions directly. Respond in a manner that reflects inspiring expertise and wisdom. [USER] """ # Initialize an empty DataFrame to store the history history_df = pd.DataFrame(columns=['Timestamp', 'Model', 'Input Size', 'Output Size', 'Request', 'Response']) def save_history(): history_df_copy = history_df.copy() history_df_copy['Timestamp'] = history_df_copy['Timestamp'].astype(str) history_df_copy.to_json('chat_history.json', orient='records') def load_history(): global history_df if os.path.exists('chat_history.json'): history_df = pd.read_json('chat_history.json', orient='records') history_df['Timestamp'] = pd.to_datetime(history_df['Timestamp']) else: history_df = pd.DataFrame(columns=['Timestamp', 'Model', 'Input Size', 'Output Size', 'Request', 'Response']) return history_df def models(text, model="Llama 3 8B", seed=42): global history_df seed = int(randomize_seed_fn(seed)) generator = torch.Generator().manual_seed(seed) client = client_fn(model) generate_kwargs = dict( max_new_tokens=300, seed=seed ) formatted_prompt = system_instructions1 + text + "[DR. NOVA QUANTUM]" stream = client.text_generation( formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: if not response.token.text == "": output += response.token.text # Check if the exact same request and response already exist in the DataFrame existing_record = history_df[(history_df['Request'] == text) & (history_df['Response'] == output)] if existing_record.empty: # Add the current interaction to the history DataFrame only if it doesn't exist new_row = pd.DataFrame({ 'Timestamp': [datetime.now()], 'Model': [model], 'Input Size': [len(text)], 'Output Size': [len(output)], 'Request': [text], 'Response': [output] }) history_df = pd.concat([history_df, new_row], ignore_index=True) save_history() return output # Add a list of available voices VOICES = [ "en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural", "en-AU-NatashaNeural", "en-CA-ClaraNeural", ] async def respond(audio, model, seed, voice): user = transcribe(audio) reply = models(user, model, seed) communicate = edge_tts.Communicate(reply, voice=voice) with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: tmp_path = tmp_file.name await communicate.save(tmp_path) return tmp_path def display_history(): df = load_history() df['Timestamp'] = df['Timestamp'].astype(str) return df def download_history(): csv_buffer = io.StringIO() history_df_copy = history_df.copy() history_df_copy['Timestamp'] = history_df_copy['Timestamp'].astype(str) history_df_copy.to_csv(csv_buffer, index=False) csv_string = csv_buffer.getvalue() b64 = base64.b64encode(csv_string.encode()).decode() href = f'data:text/csv;base64,{b64}' return gr.HTML(f'Download Chat History') DESCRIPTION = """#