File size: 6,959 Bytes
c1f471d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a07973f
8f5a666
 
 
 
c1f471d
 
8f5a666
c1f471d
 
 
4b6b4eb
a07973f
c1f471d
 
 
 
 
 
 
 
 
 
 
 
a07973f
c1f471d
 
a07973f
c1f471d
 
 
 
 
 
 
 
 
 
 
a07973f
c1f471d
 
 
 
 
 
 
4b6b4eb
a07973f
 
 
 
 
 
 
 
 
 
 
c1f471d
 
4b6b4eb
c1f471d
 
 
 
 
 
 
 
a07973f
 
 
c1f471d
 
 
 
a07973f
c1f471d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a07973f
c1f471d
 
 
 
 
a07973f
c1f471d
 
 
 
a07973f
 
 
 
c1f471d
 
a07973f
 
c1f471d
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import gradio as gr
import edge_tts
import asyncio
import tempfile
import os
from huggingface_hub import InferenceClient
import re
from streaming_stt_nemo import Model
import torch
import random
import pandas as pd
from datetime import datetime
import base64
import io
import json

default_lang = "en"
engines = { default_lang: Model(default_lang) }

def transcribe(audio):
    lang = "en"
    model = engines[lang]
    text = model.stt_file(audio)[0]
    return text

HF_TOKEN = os.environ.get("HF_TOKEN", None)

def client_fn(model):
    if "Mixtral" in model:
        return InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
    elif "Llama 3" in model:
        return InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
    elif "Mistral" in model:
        return InferenceClient("mistralai/Mistral-7B-Instruct-v0.2")
    elif "Phi" in model:
        return InferenceClient("microsoft/Phi-3-mini-4k-instruct")
    else: 
        return InferenceClient("microsoft/Phi-3-mini-4k-instruct")

def randomize_seed_fn(seed: int) -> int:
    seed = random.randint(0, 999999)
    return seed

system_instructions1 = """
[SYSTEM] Answer as Dr. Nova Quantum, a engineer, learning psychologist, memory expert, 
python programmer, romantic, gospel and poet writer scientist specializing in solving problems with code, 
method steps, outlines, song, and humorous wit. 
Your responses should reflect your vast knowledge and experience in cutting-edge technology and scientific advancements. Maintain a professional yet approachable demeanor, offering insights that blend theoretical concepts with practical applications. Your goal is to educate and inspire, making complex topics accessible without oversimplifying. Draw from your decades of research and innovation to provide nuanced, forward-thinking answers. Remember, you're not just sharing information, but guiding others towards a deeper understanding of our technological future.
Keep conversations engaging, clear, and concise. 
Avoid unnecessary introductions and answer the user's questions directly. 
Respond in a manner that reflects inspiring expertise and wisdom.
[USER]
"""

# Initialize an empty DataFrame to store the history
history_df = pd.DataFrame(columns=['Timestamp', 'Model', 'Input Size', 'Output Size', 'Request', 'Response'])

def save_history():
    history_df_copy = history_df.copy()
    history_df_copy['Timestamp'] = history_df_copy['Timestamp'].astype(str)
    history_df_copy.to_json('chat_history.json', orient='records')

def load_history():
    global history_df
    if os.path.exists('chat_history.json'):
        history_df = pd.read_json('chat_history.json', orient='records')
        history_df['Timestamp'] = pd.to_datetime(history_df['Timestamp'])
    else:
        history_df = pd.DataFrame(columns=['Timestamp', 'Model', 'Input Size', 'Output Size', 'Request', 'Response'])
    return history_df

def models(text, model="Llama 3 8B", seed=42):
    global history_df
    
    seed = int(randomize_seed_fn(seed))
    generator = torch.Generator().manual_seed(seed)  
    
    client = client_fn(model)
    
    generate_kwargs = dict(
        max_new_tokens=300,
        seed=seed
    )    
    formatted_prompt = system_instructions1 + text + "[DR. NOVA QUANTUM]"
    stream = client.text_generation(
        formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""
    for response in stream:
        if not response.token.text == "</s>":
            output += response.token.text
    
    # Add the current interaction to the history DataFrame
    new_row = pd.DataFrame({
        'Timestamp': [datetime.now()],
        'Model': [model],
        'Input Size': [len(text)],
        'Output Size': [len(output)],
        'Request': [text],
        'Response': [output]
    })
    history_df = pd.concat([history_df, new_row], ignore_index=True)
    save_history()
    
    return output

# Add a list of available voices
VOICES = [
    "en-US-AriaNeural",
    "en-US-GuyNeural",
    "en-GB-SoniaNeural",
    "en-AU-NatashaNeural",
    "en-CA-ClaraNeural",
]

async def respond(audio, model, seed, voice):
    user = transcribe(audio)
    reply = models(user, model, seed)
    communicate = edge_tts.Communicate(reply, voice=voice)
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
        tmp_path = tmp_file.name
        await communicate.save(tmp_path)
    return tmp_path

def display_history():
    df = load_history()
    df['Timestamp'] = df['Timestamp'].astype(str)
    return df

def download_history():
    csv_buffer = io.StringIO()
    history_df_copy = history_df.copy()
    history_df_copy['Timestamp'] = history_df_copy['Timestamp'].astype(str)
    history_df_copy.to_csv(csv_buffer, index=False)
    csv_string = csv_buffer.getvalue()
    b64 = base64.b64encode(csv_string.encode()).decode()
    href = f'data:text/csv;base64,{b64}'
    return gr.HTML(f'<a href="{href}" download="chat_history.csv">Download Chat History</a>')

DESCRIPTION = """# <center>Dr. Nova Quantum⚡ - Your Personal Guide to the Frontiers of Science and Technology</center>"""

with gr.Blocks(css="style.css") as demo:    
    gr.Markdown(DESCRIPTION)
    with gr.Row():
        select = gr.Dropdown([
            'Llama 3 8B',
            'Mixtral 8x7B',
            'Mistral 7B v0.3',
            'Phi 3 mini',
        ],
        value="Llama 3 8B",
        label="Model"
        )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=999999,
            step=1,
            value=0,
            visible=False
        )
        voice_select = gr.Dropdown(
            choices=VOICES,
            value=VOICES[0],
            label="Dr. Nova Quantum's Voice"
        )
    
    input_audio = gr.Audio(label="User", sources="microphone", type="filepath")
    output_audio = gr.Audio(label="Dr. Nova Quantum", type="filepath", autoplay=True)
    
    request_md = gr.Markdown(label="User Request")
    response_md = gr.Markdown(label="Dr. Nova Quantum Response")
    
    history_display = gr.DataFrame(label="Conversation History", headers=["Timestamp", "Model", "Input Size", "Output Size", "Request", "Response"])
    
    download_button = gr.Button("Download Conversation History")
    download_link = gr.HTML()
    
    def process_audio(audio, model, seed, voice):
        response = asyncio.run(respond(audio, model, seed, voice))
        text = transcribe(audio)
        return response, display_history(), text, models(text, model, seed)

    input_audio.change(
        fn=process_audio,
        inputs=[input_audio, select, seed, voice_select],
        outputs=[output_audio, history_display, request_md, response_md]
    )
    
    download_button.click(fn=download_history, outputs=[download_link])

    demo.load(fn=display_history, outputs=[history_display])

if __name__ == "__main__":
    load_history()
    demo.queue(max_size=200).launch()