awacke1 commited on
Commit
d9ca5dc
·
1 Parent(s): cfa554a

Create backup.app.py

Browse files
Files changed (1) hide show
  1. backup.app.py +65 -0
backup.app.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from cmath import pi
2
+ from json import load, tool
3
+ from os import stat
4
+ import streamlit as st
5
+ import pandas as pd
6
+ import numpy as np
7
+ import pydeck as pdk
8
+ from typing import Dict, Union
9
+ import streamlit.components.v1 as components
10
+
11
+ st.title("Live 3D Map")
12
+ location = st.checkbox('Location Filter')
13
+ queried_zip_code = None
14
+ queried_city = None
15
+ queried_state = None
16
+ queried_age = None
17
+ if location:
18
+ queried_zip_code = st.text_input('Zip Code:')
19
+ queried_city = st.text_input('City')
20
+ queried_state = st.selectbox('State:', ('AL', 'AK', 'AZ', 'AR', 'AS','CA','CO','CT','DE','DC','FL','GA','GU','HI','ID','IL',
21
+ 'IN','IA','KS','KY','LA','ME','MD','MA','MI','MN','MS','MO','MT','NE','NV','NH','NJ','NM','NY','NC','ND','CM','OH',
22
+ 'OK','OR','PA','PR','RI','SC','SD','TN','TX','UT','VT','VA','VI','WA','WV','WI','WY'))
23
+ ageBox = st.checkbox("Age Filter")
24
+ if ageBox:
25
+ queried_age = st.slider("Age",0,200,(0,200))
26
+
27
+ queried_male = st.checkbox("Male",value=True)
28
+ queried_female = st.checkbox("Female",value=True)
29
+
30
+ @st.cache(allow_output_mutation=True)
31
+ def gen_load() -> pd.DataFrame:
32
+ df = pd.read_csv('US.txt')
33
+ return df
34
+
35
+ import streamlit as st
36
+ import pandas as pd
37
+ import pydeck as pdk
38
+
39
+ def ShowCityDataframe(uscities, US):
40
+ df = pd.read_csv(uscities)
41
+ df1 = pd.read_csv(uscities)
42
+ df2 = pd.read_csv(uscities)
43
+
44
+ st.title("City FIPS, Location, and Population")
45
+ st.text("Search for any city in the United States:")
46
+
47
+ search_query = st.text_input(label="City Name", value="")
48
+ if search_query != "":
49
+ df = df1[df1["city"].str.contains(search_query, case=False)]
50
+ st.subheader("City Detail")
51
+ st.write(df)
52
+
53
+ search_query2 = st.text_input(label="Zip Code", value="")
54
+ if search_query2 != "":
55
+ df = df2[df2["zips"].str.contains(search_query2, case=False)]
56
+ st.subheader("Zip Code Area Detail")
57
+ st.write(df)
58
+
59
+ uscities = "uscities.csv" # CSV - Columns are: "city","city_ascii","state_id","state_name","county_fips","county_name","lat","lng","population","density","source","military","incorporated","timezone","ranking","zips","id"
60
+ US = "US.txt" # TSV - Columns are: Country Zip City State Area AreaCode Latitude Longitude Include
61
+ # TSV Columns sample: US 99553 Akutan Alaska AK Aleutians East 013 54.143 -165.7854 1
62
+ us-zip-codes = "us-zip-code-latitude-and-longitude.txt" # SSV - Columns are: Zip;City;State;Latitude;Longitude;Timezone;Daylight savings time flag;geopoint
63
+ # SSV Columns sample: 71937;Cove;AR;34.398483;-94.39398;-6;1;34.398483,-94.39398
64
+
65
+ ShowCityDataframe(uscities, US)