Spaces:
Sleeping
Sleeping
Create backup.app.py
Browse files- backup.app.py +65 -0
backup.app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from cmath import pi
|
2 |
+
from json import load, tool
|
3 |
+
from os import stat
|
4 |
+
import streamlit as st
|
5 |
+
import pandas as pd
|
6 |
+
import numpy as np
|
7 |
+
import pydeck as pdk
|
8 |
+
from typing import Dict, Union
|
9 |
+
import streamlit.components.v1 as components
|
10 |
+
|
11 |
+
st.title("Live 3D Map")
|
12 |
+
location = st.checkbox('Location Filter')
|
13 |
+
queried_zip_code = None
|
14 |
+
queried_city = None
|
15 |
+
queried_state = None
|
16 |
+
queried_age = None
|
17 |
+
if location:
|
18 |
+
queried_zip_code = st.text_input('Zip Code:')
|
19 |
+
queried_city = st.text_input('City')
|
20 |
+
queried_state = st.selectbox('State:', ('AL', 'AK', 'AZ', 'AR', 'AS','CA','CO','CT','DE','DC','FL','GA','GU','HI','ID','IL',
|
21 |
+
'IN','IA','KS','KY','LA','ME','MD','MA','MI','MN','MS','MO','MT','NE','NV','NH','NJ','NM','NY','NC','ND','CM','OH',
|
22 |
+
'OK','OR','PA','PR','RI','SC','SD','TN','TX','UT','VT','VA','VI','WA','WV','WI','WY'))
|
23 |
+
ageBox = st.checkbox("Age Filter")
|
24 |
+
if ageBox:
|
25 |
+
queried_age = st.slider("Age",0,200,(0,200))
|
26 |
+
|
27 |
+
queried_male = st.checkbox("Male",value=True)
|
28 |
+
queried_female = st.checkbox("Female",value=True)
|
29 |
+
|
30 |
+
@st.cache(allow_output_mutation=True)
|
31 |
+
def gen_load() -> pd.DataFrame:
|
32 |
+
df = pd.read_csv('US.txt')
|
33 |
+
return df
|
34 |
+
|
35 |
+
import streamlit as st
|
36 |
+
import pandas as pd
|
37 |
+
import pydeck as pdk
|
38 |
+
|
39 |
+
def ShowCityDataframe(uscities, US):
|
40 |
+
df = pd.read_csv(uscities)
|
41 |
+
df1 = pd.read_csv(uscities)
|
42 |
+
df2 = pd.read_csv(uscities)
|
43 |
+
|
44 |
+
st.title("City FIPS, Location, and Population")
|
45 |
+
st.text("Search for any city in the United States:")
|
46 |
+
|
47 |
+
search_query = st.text_input(label="City Name", value="")
|
48 |
+
if search_query != "":
|
49 |
+
df = df1[df1["city"].str.contains(search_query, case=False)]
|
50 |
+
st.subheader("City Detail")
|
51 |
+
st.write(df)
|
52 |
+
|
53 |
+
search_query2 = st.text_input(label="Zip Code", value="")
|
54 |
+
if search_query2 != "":
|
55 |
+
df = df2[df2["zips"].str.contains(search_query2, case=False)]
|
56 |
+
st.subheader("Zip Code Area Detail")
|
57 |
+
st.write(df)
|
58 |
+
|
59 |
+
uscities = "uscities.csv" # CSV - Columns are: "city","city_ascii","state_id","state_name","county_fips","county_name","lat","lng","population","density","source","military","incorporated","timezone","ranking","zips","id"
|
60 |
+
US = "US.txt" # TSV - Columns are: Country Zip City State Area AreaCode Latitude Longitude Include
|
61 |
+
# TSV Columns sample: US 99553 Akutan Alaska AK Aleutians East 013 54.143 -165.7854 1
|
62 |
+
us-zip-codes = "us-zip-code-latitude-and-longitude.txt" # SSV - Columns are: Zip;City;State;Latitude;Longitude;Timezone;Daylight savings time flag;geopoint
|
63 |
+
# SSV Columns sample: 71937;Cove;AR;34.398483;-94.39398;-6;1;34.398483,-94.39398
|
64 |
+
|
65 |
+
ShowCityDataframe(uscities, US)
|