Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,40 +1,36 @@
|
|
1 |
# app.py
|
2 |
# =============================================================================
|
3 |
-
#
|
4 |
# =============================================================================
|
5 |
-
import base64
|
6 |
-
import glob
|
7 |
-
import hashlib
|
8 |
-
import json
|
9 |
-
import os
|
10 |
-
import pandas as pd
|
11 |
-
import pytz
|
12 |
-
import random
|
13 |
-
import re
|
14 |
-
import shutil
|
15 |
-
import streamlit as st
|
16 |
-
import time
|
17 |
-
import traceback
|
18 |
-
import uuid
|
19 |
-
import zipfile
|
20 |
-
from PIL import Image
|
21 |
-
from azure.cosmos import CosmosClient, PartitionKey, exceptions
|
22 |
-
from datetime import datetime
|
23 |
-
from git import Repo
|
24 |
-
from github import Github
|
25 |
-
from gradio_client import Client, handle_file
|
26 |
-
import tempfile
|
27 |
-
import io
|
28 |
-
import requests
|
29 |
-
import numpy as np
|
30 |
-
from urllib.parse import quote
|
31 |
-
|
32 |
-
# Allow nested asyncio.run calls (needed for our async TTS and Arxiv search)
|
33 |
-
import nest_asyncio
|
34 |
-
nest_asyncio.apply()
|
35 |
|
36 |
# =============================================================================
|
37 |
-
#
|
38 |
# =============================================================================
|
39 |
external_links = [
|
40 |
{"title": "MergeKit Official GitHub", "url": "https://github.com/arcee-ai/MergeKit", "emoji": "๐ป"},
|
@@ -50,7 +46,7 @@ external_links = [
|
|
50 |
]
|
51 |
|
52 |
# =============================================================================
|
53 |
-
#
|
54 |
# =============================================================================
|
55 |
Site_Name = '๐ GitCosmos'
|
56 |
title = "๐ GitCosmos"
|
@@ -78,9 +74,8 @@ LOCAL_APP_URL = "https://huggingface.co/spaces/awacke1/AzureCosmosDBUI"
|
|
78 |
CosmosDBUrl = 'https://portal.azure.com/#@AaronCWackergmail.onmicrosoft.com/resource/subscriptions/003fba60-5b3f-48f4-ab36-3ed11bc40816/resourceGroups/datasets/providers/Microsoft.DocumentDB/databaseAccounts/acae-afd/dataExplorer'
|
79 |
|
80 |
# =============================================================================
|
81 |
-
#
|
82 |
# =============================================================================
|
83 |
-
# ๐ Get a download link for a file
|
84 |
def get_download_link(file_path):
|
85 |
with open(file_path, "rb") as file:
|
86 |
contents = file.read()
|
@@ -88,7 +83,6 @@ def get_download_link(file_path):
|
|
88 |
file_name = os.path.basename(file_path)
|
89 |
return f'<a href="data:file/txt;base64,{b64}" download="{file_name}">Download {file_name} ๐</a>'
|
90 |
|
91 |
-
# ๐ Generate a unique ID
|
92 |
def generate_unique_id():
|
93 |
timestamp = datetime.utcnow().strftime('%Y%m%d%H%M%S%f')
|
94 |
unique_uuid = str(uuid.uuid4())
|
@@ -96,27 +90,23 @@ def generate_unique_id():
|
|
96 |
st.write('New ID: ' + return_value)
|
97 |
return return_value
|
98 |
|
99 |
-
# ๐ Generate a safe filename based on a prompt
|
100 |
def generate_filename(prompt, file_type):
|
101 |
central = pytz.timezone('US/Central')
|
102 |
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
|
103 |
safe_prompt = re.sub(r'\W+', '', prompt)[:90]
|
104 |
return f"{safe_date_time}{safe_prompt}.{file_type}"
|
105 |
|
106 |
-
# ๐ Create a file with given content
|
107 |
def create_file(filename, prompt, response, should_save=True):
|
108 |
if not should_save:
|
109 |
return
|
110 |
with open(filename, 'w', encoding='utf-8') as file:
|
111 |
file.write(prompt + "\n\n" + response)
|
112 |
|
113 |
-
# ๐ Load file contents
|
114 |
def load_file(file_name):
|
115 |
with open(file_name, "r", encoding='utf-8') as file:
|
116 |
content = file.read()
|
117 |
return content
|
118 |
|
119 |
-
# ๐ Display a glossary entity with quick search links
|
120 |
def display_glossary_entity(k):
|
121 |
search_urls = {
|
122 |
"๐": lambda k: f"/?q={k}",
|
@@ -127,7 +117,6 @@ def display_glossary_entity(k):
|
|
127 |
links_md = ' '.join([f"<a href='{url(k)}' target='_blank'>{emoji}</a>" for emoji, url in search_urls.items()])
|
128 |
st.markdown(f"{k} {links_md}", unsafe_allow_html=True)
|
129 |
|
130 |
-
# ๐ฆ Create a ZIP archive of given files
|
131 |
def create_zip_of_files(files):
|
132 |
zip_name = "all_files.zip"
|
133 |
with zipfile.ZipFile(zip_name, 'w') as zipf:
|
@@ -135,7 +124,6 @@ def create_zip_of_files(files):
|
|
135 |
zipf.write(file)
|
136 |
return zip_name
|
137 |
|
138 |
-
# ๐ฅ Get HTML to embed a video
|
139 |
def get_video_html(video_path, width="100%"):
|
140 |
video_url = f"data:video/mp4;base64,{base64.b64encode(open(video_path, 'rb').read()).decode()}"
|
141 |
return f'''
|
@@ -145,7 +133,6 @@ def get_video_html(video_path, width="100%"):
|
|
145 |
</video>
|
146 |
'''
|
147 |
|
148 |
-
# ๐ต Get HTML to embed audio
|
149 |
def get_audio_html(audio_path, width="100%"):
|
150 |
audio_url = f"data:audio/mpeg;base64,{base64.b64encode(open(audio_path, 'rb').read()).decode()}"
|
151 |
return f'''
|
@@ -155,7 +142,6 @@ def get_audio_html(audio_path, width="100%"):
|
|
155 |
</audio>
|
156 |
'''
|
157 |
|
158 |
-
# โ๏ธ Preprocess text (e.g., for JSON safety)
|
159 |
def preprocess_text(text):
|
160 |
text = text.replace('\r\n', '\\n').replace('\r', '\\n').replace('\n', '\\n')
|
161 |
text = text.replace('"', '\\"')
|
@@ -164,7 +150,7 @@ def preprocess_text(text):
|
|
164 |
return text.strip()
|
165 |
|
166 |
# =============================================================================
|
167 |
-
#
|
168 |
# =============================================================================
|
169 |
def get_databases(client):
|
170 |
return [db['id'] for db in client.list_databases()]
|
@@ -269,7 +255,7 @@ def archive_current_container(database_name, container_name, client):
|
|
269 |
return f"Archive error: {str(e)} ๐ข"
|
270 |
|
271 |
# =============================================================================
|
272 |
-
#
|
273 |
# =============================================================================
|
274 |
def create_new_container(database, container_id, partition_key_path,
|
275 |
analytical_storage_ttl=None, indexing_policy=None, vector_embedding_policy=None):
|
@@ -338,7 +324,7 @@ def vector_search(container, query_vector, vector_field, top=10, exact_search=Fa
|
|
338 |
return results
|
339 |
|
340 |
# =============================================================================
|
341 |
-
#
|
342 |
# =============================================================================
|
343 |
def download_github_repo(url, local_path):
|
344 |
if os.path.exists(local_path):
|
@@ -371,7 +357,7 @@ def push_to_github(local_path, repo, github_token):
|
|
371 |
origin.push(refspec=f'{current_branch}:{current_branch}')
|
372 |
|
373 |
# =============================================================================
|
374 |
-
#
|
375 |
# =============================================================================
|
376 |
def display_saved_files_in_sidebar():
|
377 |
all_files = sorted([f for f in glob.glob("*.md") if not f.lower().startswith('readme')], reverse=True)
|
@@ -413,7 +399,11 @@ def display_file_editor(file_path):
|
|
413 |
return
|
414 |
st.markdown("### โ๏ธ Edit File")
|
415 |
st.markdown(f"**Editing:** {file_path}")
|
416 |
-
|
|
|
|
|
|
|
|
|
417 |
col1, col2 = st.columns([1, 5])
|
418 |
with col1:
|
419 |
if st.button("๐พ Save"):
|
@@ -495,34 +485,35 @@ def update_file_management_section():
|
|
495 |
display_file_editor(st.session_state.current_file)
|
496 |
|
497 |
# =============================================================================
|
498 |
-
#
|
499 |
# =============================================================================
|
500 |
-
def show_sidebar_data_grid(
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
|
|
523 |
|
524 |
# =============================================================================
|
525 |
-
#
|
526 |
# =============================================================================
|
527 |
def validate_and_preprocess_image(file_data, target_size=(576, 1024)):
|
528 |
try:
|
@@ -638,7 +629,58 @@ def add_video_generation_ui(container):
|
|
638 |
st.error(f"Upload error: {str(e)}")
|
639 |
|
640 |
# =============================================================================
|
641 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
642 |
# =============================================================================
|
643 |
def new_item_default(container):
|
644 |
new_id = generate_unique_id()
|
@@ -681,7 +723,7 @@ def add_field_to_doc():
|
|
681 |
st.error(f"Error adding field: {str(e)}")
|
682 |
|
683 |
# =============================================================================
|
684 |
-
#
|
685 |
# =============================================================================
|
686 |
def vector_keyword_search(keyword, container):
|
687 |
try:
|
@@ -693,7 +735,7 @@ def vector_keyword_search(keyword, container):
|
|
693 |
return []
|
694 |
|
695 |
# =============================================================================
|
696 |
-
#
|
697 |
# =============================================================================
|
698 |
def new_ai_record(container):
|
699 |
new_id = generate_unique_id()
|
@@ -737,7 +779,7 @@ def new_links_record(container):
|
|
737 |
return None
|
738 |
|
739 |
# =============================================================================
|
740 |
-
#
|
741 |
# =============================================================================
|
742 |
def display_langchain_functions():
|
743 |
functions = [
|
@@ -750,37 +792,102 @@ def display_langchain_functions():
|
|
750 |
st.sidebar.write(f"{func['name']}: {func['comment']}")
|
751 |
|
752 |
# =============================================================================
|
753 |
-
#
|
754 |
-
# NEW: SIDEBAR DATA GRID FUNCTION
|
755 |
# =============================================================================
|
756 |
-
|
757 |
-
|
758 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
759 |
try:
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
|
767 |
-
|
768 |
-
formatted = ts
|
769 |
-
data.append({
|
770 |
-
"ID": rec.get("id", ""),
|
771 |
-
"Name": rec.get("name", ""),
|
772 |
-
"Timestamp": formatted
|
773 |
-
})
|
774 |
-
df = pd.DataFrame(data)
|
775 |
-
st.sidebar.markdown("### ๐ Data Grid")
|
776 |
-
st.sidebar.dataframe(df)
|
777 |
except Exception as e:
|
778 |
-
st.
|
779 |
-
|
780 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
781 |
|
782 |
# =============================================================================
|
783 |
-
#
|
784 |
# =============================================================================
|
785 |
def parse_arxiv_refs(ref_text: str):
|
786 |
if not ref_text:
|
@@ -848,7 +955,7 @@ def generate_5min_feature_markdown(paper: dict) -> str:
|
|
848 |
pdf_link = generate_pdf_link(url)
|
849 |
title_wc = len(title.split())
|
850 |
summary_wc = len(summary.split())
|
851 |
-
high_info_terms = [term for term in summary.split()[:5]]
|
852 |
terms_str = ", ".join(high_info_terms)
|
853 |
rouge_score = round((len(high_info_terms) / max(len(summary.split()), 1)) * 100, 2)
|
854 |
mermaid_code = "```mermaid\nflowchart TD\n"
|
@@ -881,107 +988,80 @@ def create_detailed_paper_md(papers: list) -> str:
|
|
881 |
return "\n".join(md_parts)
|
882 |
|
883 |
# =============================================================================
|
884 |
-
#
|
|
|
885 |
# =============================================================================
|
886 |
-
|
887 |
-
|
888 |
-
|
889 |
-
|
890 |
-
|
891 |
-
|
892 |
-
|
893 |
-
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
-
|
898 |
-
|
899 |
-
|
900 |
-
|
901 |
-
|
902 |
-
|
903 |
-
|
904 |
-
|
905 |
-
|
906 |
-
|
907 |
-
|
908 |
-
|
909 |
-
|
910 |
-
|
911 |
-
|
912 |
-
|
913 |
-
|
914 |
-
|
915 |
-
|
916 |
-
|
917 |
-
|
918 |
-
|
919 |
-
|
920 |
-
|
921 |
-
|
922 |
-
|
923 |
-
|
924 |
-
|
925 |
-
|
926 |
-
|
927 |
-
|
928 |
-
async def async_save_qa_with_audio(question: str, answer: str):
|
929 |
-
with PerformanceTimer("qa_save") as timer:
|
930 |
-
md_file = create_file(question, answer, "md")
|
931 |
-
audio_file = None
|
932 |
-
if st.session_state.get('enable_audio', True):
|
933 |
-
audio_text = f"{question}\n\nAnswer: {answer}"
|
934 |
-
audio_file, _ = await async_edge_tts_generate(audio_text, voice=st.session_state.get('tts_voice', "en-US-AriaNeural"), file_format=st.session_state.get('audio_format', "mp3"))
|
935 |
-
return md_file, audio_file, time.time() - timer.start_time, 0
|
936 |
-
|
937 |
-
def save_qa_with_audio(question, answer, voice=None):
|
938 |
-
if not voice:
|
939 |
-
voice = st.session_state.get('tts_voice', "en-US-AriaNeural")
|
940 |
-
md_file = create_file(question, answer, "md")
|
941 |
-
audio_text = f"{question}\n\nAnswer: {answer}"
|
942 |
-
audio_file = speak_with_edge_tts(audio_text, voice=voice, file_format=st.session_state.get('audio_format', "mp3"))
|
943 |
-
return md_file, audio_file
|
944 |
-
|
945 |
-
def play_and_download_audio(file_path, file_type="mp3"):
|
946 |
-
if file_path and os.path.exists(file_path):
|
947 |
-
st.audio(file_path)
|
948 |
-
dl_link = get_download_link(file_path, file_type=file_type)
|
949 |
-
st.markdown(dl_link, unsafe_allow_html=True)
|
950 |
-
|
951 |
-
def create_download_link_with_cache(file_path: str, file_type: str = "mp3") -> str:
|
952 |
-
cache_key = f"dl_{file_path}"
|
953 |
-
if cache_key in st.session_state.get('download_link_cache', {}):
|
954 |
-
return st.session_state['download_link_cache'][cache_key]
|
955 |
-
try:
|
956 |
-
with open(file_path, "rb") as f:
|
957 |
-
b64 = base64.b64encode(f.read()).decode()
|
958 |
-
filename = os.path.basename(file_path)
|
959 |
-
if file_type == "mp3":
|
960 |
-
link = f'<a href="data:audio/mpeg;base64,{b64}" download="{filename}">๐ต Download {filename}</a>'
|
961 |
-
elif file_type == "wav":
|
962 |
-
link = f'<a href="data:audio/wav;base64,{b64}" download="{filename}">๐ Download {filename}</a>'
|
963 |
-
elif file_type == "md":
|
964 |
-
link = f'<a href="data:text/markdown;base64,{b64}" download="{filename}">๐ Download {filename}</a>'
|
965 |
else:
|
966 |
-
|
967 |
-
|
968 |
-
|
969 |
-
|
970 |
-
|
971 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
972 |
|
973 |
# =============================================================================
|
974 |
-
#
|
975 |
-
# MAIN FUNCTION
|
976 |
# =============================================================================
|
977 |
def main():
|
978 |
-
|
979 |
st.markdown(f"[๐ Portal]({CosmosDBUrl})")
|
980 |
-
# Initialize some session state keys if not already present
|
981 |
if "chat_history" not in st.session_state:
|
982 |
st.session_state.chat_history = []
|
983 |
st.session_state.setdefault("current_container", None)
|
984 |
-
|
|
|
|
|
|
|
|
|
|
|
985 |
st.sidebar.markdown("## ๐ ๏ธ Item Management")
|
986 |
if st.sidebar.button("New Item"):
|
987 |
if st.session_state.get("current_container"):
|
@@ -1017,17 +1097,15 @@ def main():
|
|
1017 |
st.sidebar.code(json.dumps(res, indent=2), language="json")
|
1018 |
else:
|
1019 |
st.warning("No container selected for search!")
|
1020 |
-
# Show the sidebar data grid with records
|
1021 |
show_sidebar_data_grid()
|
1022 |
-
# Display Langchain functions in sidebar
|
1023 |
display_langchain_functions()
|
1024 |
-
# Navigator: Container selection and data grid
|
1025 |
try:
|
1026 |
if st.session_state.get("client") is None:
|
1027 |
st.session_state.client = CosmosClient(ENDPOINT, credential=st.session_state.primary_key)
|
1028 |
st.sidebar.title("๐ Navigator")
|
1029 |
databases = get_databases(st.session_state.client)
|
1030 |
selected_db = st.sidebar.selectbox("๐๏ธ DB", databases)
|
|
|
1031 |
if selected_db != st.session_state.get("selected_database"):
|
1032 |
st.session_state.selected_database = selected_db
|
1033 |
st.session_state.selected_container = None
|
@@ -1048,12 +1126,7 @@ def main():
|
|
1048 |
submitted = st.form_submit_button("Create Container")
|
1049 |
if submitted:
|
1050 |
analytical_ttl = -1 if new_analytical else None
|
1051 |
-
new_container = create_new_container(
|
1052 |
-
database,
|
1053 |
-
new_container_id,
|
1054 |
-
new_partition_key,
|
1055 |
-
analytical_storage_ttl=analytical_ttl
|
1056 |
-
)
|
1057 |
if new_container:
|
1058 |
st.success(f"Container '{new_container_id}' created.")
|
1059 |
default_id = generate_unique_id()
|
@@ -1157,7 +1230,6 @@ def main():
|
|
1157 |
st.write(log_entry)
|
1158 |
elif selected_view == 'Run AI':
|
1159 |
st.markdown("#### ๐ค Run AI")
|
1160 |
-
# NEW: Use a text area and a Send button (message button UI)
|
1161 |
ai_query = st.text_area("Enter your query for ArXiv search:", key="arxiv_query", height=100)
|
1162 |
if st.button("Send"):
|
1163 |
st.session_state.last_query = ai_query
|
@@ -1258,20 +1330,14 @@ def main():
|
|
1258 |
st.session_state.selected_document_id = None
|
1259 |
st.session_state.current_index = 0
|
1260 |
st.rerun()
|
1261 |
-
|
1262 |
-
# Also display the sidebar data grid (records overview)
|
1263 |
show_sidebar_data_grid()
|
1264 |
|
|
|
|
|
|
|
|
|
1265 |
# =============================================================================
|
1266 |
-
# Additional Blank Lines for Spacing (~1500 lines total)
|
1267 |
-
# =============================================================================
|
1268 |
-
#
|
1269 |
-
#
|
1270 |
-
#
|
1271 |
-
#
|
1272 |
-
#
|
1273 |
-
#
|
1274 |
-
#
|
1275 |
#
|
1276 |
#
|
1277 |
#
|
@@ -1396,18 +1462,78 @@ def main():
|
|
1396 |
#
|
1397 |
#
|
1398 |
#
|
1399 |
-
#
|
1400 |
-
#
|
1401 |
-
#
|
1402 |
-
#
|
1403 |
-
#
|
1404 |
-
#
|
1405 |
-
#
|
1406 |
-
#
|
1407 |
-
#
|
1408 |
-
#
|
1409 |
-
#
|
1410 |
-
#
|
1411 |
-
#
|
1412 |
-
#
|
1413 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# app.py
|
2 |
# =============================================================================
|
3 |
+
# โโโโโโโโโโโโโ IMPORTS โโโโโโโโโโโโโ
|
4 |
# =============================================================================
|
5 |
+
import base64
|
6 |
+
import glob
|
7 |
+
import hashlib
|
8 |
+
import json
|
9 |
+
import os
|
10 |
+
import pandas as pd
|
11 |
+
import pytz
|
12 |
+
import random
|
13 |
+
import re
|
14 |
+
import shutil
|
15 |
+
import streamlit as st
|
16 |
+
import time
|
17 |
+
import traceback
|
18 |
+
import uuid
|
19 |
+
import zipfile
|
20 |
+
from PIL import Image
|
21 |
+
from azure.cosmos import CosmosClient, PartitionKey, exceptions
|
22 |
+
from datetime import datetime
|
23 |
+
from git import Repo
|
24 |
+
from github import Github
|
25 |
+
from gradio_client import Client, handle_file
|
26 |
+
import tempfile
|
27 |
+
import io
|
28 |
+
import requests
|
29 |
+
import numpy as np
|
30 |
+
from urllib.parse import quote
|
|
|
|
|
|
|
|
|
31 |
|
32 |
# =============================================================================
|
33 |
+
# โโโโโโโโโโโโโ EXTERNAL HELP LINKS (Always visible in sidebar) โโโโโโโโโโโโโ
|
34 |
# =============================================================================
|
35 |
external_links = [
|
36 |
{"title": "MergeKit Official GitHub", "url": "https://github.com/arcee-ai/MergeKit", "emoji": "๐ป"},
|
|
|
46 |
]
|
47 |
|
48 |
# =============================================================================
|
49 |
+
# โโโโโโโโโโโโโ APP CONFIGURATION โโโโโโโโโโโโโ
|
50 |
# =============================================================================
|
51 |
Site_Name = '๐ GitCosmos'
|
52 |
title = "๐ GitCosmos"
|
|
|
74 |
CosmosDBUrl = 'https://portal.azure.com/#@AaronCWackergmail.onmicrosoft.com/resource/subscriptions/003fba60-5b3f-48f4-ab36-3ed11bc40816/resourceGroups/datasets/providers/Microsoft.DocumentDB/databaseAccounts/acae-afd/dataExplorer'
|
75 |
|
76 |
# =============================================================================
|
77 |
+
# โโโโโโโโโโโโโ HELPER FUNCTIONS โโโโโโโโโโโโโ
|
78 |
# =============================================================================
|
|
|
79 |
def get_download_link(file_path):
|
80 |
with open(file_path, "rb") as file:
|
81 |
contents = file.read()
|
|
|
83 |
file_name = os.path.basename(file_path)
|
84 |
return f'<a href="data:file/txt;base64,{b64}" download="{file_name}">Download {file_name} ๐</a>'
|
85 |
|
|
|
86 |
def generate_unique_id():
|
87 |
timestamp = datetime.utcnow().strftime('%Y%m%d%H%M%S%f')
|
88 |
unique_uuid = str(uuid.uuid4())
|
|
|
90 |
st.write('New ID: ' + return_value)
|
91 |
return return_value
|
92 |
|
|
|
93 |
def generate_filename(prompt, file_type):
|
94 |
central = pytz.timezone('US/Central')
|
95 |
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
|
96 |
safe_prompt = re.sub(r'\W+', '', prompt)[:90]
|
97 |
return f"{safe_date_time}{safe_prompt}.{file_type}"
|
98 |
|
|
|
99 |
def create_file(filename, prompt, response, should_save=True):
|
100 |
if not should_save:
|
101 |
return
|
102 |
with open(filename, 'w', encoding='utf-8') as file:
|
103 |
file.write(prompt + "\n\n" + response)
|
104 |
|
|
|
105 |
def load_file(file_name):
|
106 |
with open(file_name, "r", encoding='utf-8') as file:
|
107 |
content = file.read()
|
108 |
return content
|
109 |
|
|
|
110 |
def display_glossary_entity(k):
|
111 |
search_urls = {
|
112 |
"๐": lambda k: f"/?q={k}",
|
|
|
117 |
links_md = ' '.join([f"<a href='{url(k)}' target='_blank'>{emoji}</a>" for emoji, url in search_urls.items()])
|
118 |
st.markdown(f"{k} {links_md}", unsafe_allow_html=True)
|
119 |
|
|
|
120 |
def create_zip_of_files(files):
|
121 |
zip_name = "all_files.zip"
|
122 |
with zipfile.ZipFile(zip_name, 'w') as zipf:
|
|
|
124 |
zipf.write(file)
|
125 |
return zip_name
|
126 |
|
|
|
127 |
def get_video_html(video_path, width="100%"):
|
128 |
video_url = f"data:video/mp4;base64,{base64.b64encode(open(video_path, 'rb').read()).decode()}"
|
129 |
return f'''
|
|
|
133 |
</video>
|
134 |
'''
|
135 |
|
|
|
136 |
def get_audio_html(audio_path, width="100%"):
|
137 |
audio_url = f"data:audio/mpeg;base64,{base64.b64encode(open(audio_path, 'rb').read()).decode()}"
|
138 |
return f'''
|
|
|
142 |
</audio>
|
143 |
'''
|
144 |
|
|
|
145 |
def preprocess_text(text):
|
146 |
text = text.replace('\r\n', '\\n').replace('\r', '\\n').replace('\n', '\\n')
|
147 |
text = text.replace('"', '\\"')
|
|
|
150 |
return text.strip()
|
151 |
|
152 |
# =============================================================================
|
153 |
+
# โโโโโโโโโโโโโ COSMOS DB FUNCTIONS โโโโโโโโโโโโโ
|
154 |
# =============================================================================
|
155 |
def get_databases(client):
|
156 |
return [db['id'] for db in client.list_databases()]
|
|
|
255 |
return f"Archive error: {str(e)} ๐ข"
|
256 |
|
257 |
# =============================================================================
|
258 |
+
# โโโโโโโโโโโโโ ADVANCED COSMOS FUNCTIONS โโโโโโโโโโโโโ
|
259 |
# =============================================================================
|
260 |
def create_new_container(database, container_id, partition_key_path,
|
261 |
analytical_storage_ttl=None, indexing_policy=None, vector_embedding_policy=None):
|
|
|
324 |
return results
|
325 |
|
326 |
# =============================================================================
|
327 |
+
# โโโโโโโโโโโโโ GITHUB FUNCTIONS โโโโโโโโโโโโโ
|
328 |
# =============================================================================
|
329 |
def download_github_repo(url, local_path):
|
330 |
if os.path.exists(local_path):
|
|
|
357 |
origin.push(refspec=f'{current_branch}:{current_branch}')
|
358 |
|
359 |
# =============================================================================
|
360 |
+
# โโโโโโโโโโโโโ FILE & MEDIA MANAGEMENT FUNCTIONS โโโโโโโโโโโโโ
|
361 |
# =============================================================================
|
362 |
def display_saved_files_in_sidebar():
|
363 |
all_files = sorted([f for f in glob.glob("*.md") if not f.lower().startswith('readme')], reverse=True)
|
|
|
399 |
return
|
400 |
st.markdown("### โ๏ธ Edit File")
|
401 |
st.markdown(f"**Editing:** {file_path}")
|
402 |
+
md_tab, code_tab = st.tabs(["Markdown", "Code"])
|
403 |
+
with md_tab:
|
404 |
+
st.markdown(st.session_state.file_content[file_path])
|
405 |
+
with code_tab:
|
406 |
+
new_content = st.text_area("Edit:", value=st.session_state.file_content[file_path], height=400, key=f"editor_{hash(file_path)}", on_change=lambda: auto_save_edit())
|
407 |
col1, col2 = st.columns([1, 5])
|
408 |
with col1:
|
409 |
if st.button("๐พ Save"):
|
|
|
485 |
display_file_editor(st.session_state.current_file)
|
486 |
|
487 |
# =============================================================================
|
488 |
+
# โโโโโโโโโโโโโ SIDEBAR DATA GRID (Records with formatted timestamps) โโโโโโโโโโโโโ
|
489 |
# =============================================================================
|
490 |
+
def show_sidebar_data_grid():
|
491 |
+
if st.session_state.get("current_container"):
|
492 |
+
try:
|
493 |
+
records = get_documents(st.session_state.current_container)
|
494 |
+
data = []
|
495 |
+
for rec in records:
|
496 |
+
ts = rec.get("timestamp", "")
|
497 |
+
try:
|
498 |
+
dt = datetime.fromisoformat(ts)
|
499 |
+
formatted = dt.strftime("%I:%M %p %m/%d/%Y")
|
500 |
+
except Exception:
|
501 |
+
formatted = ts
|
502 |
+
data.append({
|
503 |
+
"ID": rec.get("id", ""),
|
504 |
+
"Name": rec.get("name", ""),
|
505 |
+
"Timestamp": formatted
|
506 |
+
})
|
507 |
+
df = pd.DataFrame(data)
|
508 |
+
st.sidebar.markdown("### ๐ Data Grid")
|
509 |
+
st.sidebar.dataframe(df)
|
510 |
+
except Exception as e:
|
511 |
+
st.sidebar.error(f"Data grid error: {str(e)}")
|
512 |
+
else:
|
513 |
+
st.sidebar.info("No container selected for data grid.")
|
514 |
|
515 |
# =============================================================================
|
516 |
+
# โโโโโโโโโโโโโ VIDEO & AUDIO UI FUNCTIONS โโโโโโโโโโโโโ
|
517 |
# =============================================================================
|
518 |
def validate_and_preprocess_image(file_data, target_size=(576, 1024)):
|
519 |
try:
|
|
|
629 |
st.error(f"Upload error: {str(e)}")
|
630 |
|
631 |
# =============================================================================
|
632 |
+
# โโโโโโโโโโโโโ AI SAMPLES SIDEBAR (Processed as a Python List) โโโโโโโโโโโโโ
|
633 |
+
# =============================================================================
|
634 |
+
def display_ai_samples():
|
635 |
+
ai_samples = [
|
636 |
+
{
|
637 |
+
"name": "FullTextContains",
|
638 |
+
"description": "Query using FullTextContains",
|
639 |
+
"query": 'SELECT TOP 10 * FROM c WHERE FullTextContains(c.text, "bicycle")'
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"name": "FullTextContainsAll",
|
643 |
+
"description": "Query using FullTextContainsAll",
|
644 |
+
"query": 'SELECT TOP 10 * FROM c WHERE FullTextContainsAll(c.text, "red", "bicycle")'
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"name": "FullTextContainsAny",
|
648 |
+
"description": "Query using FullTextContainsAny",
|
649 |
+
"query": 'SELECT TOP 10 * FROM c WHERE FullTextContains(c.text, "red") AND FullTextContainsAny(c.text, "bicycle", "skateboard")'
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"name": "FullTextScore",
|
653 |
+
"description": "Query using FullTextScore (order by relevance)",
|
654 |
+
"query": 'SELECT TOP 10 * FROM c ORDER BY RANK FullTextScore(c.text, ["bicycle", "mountain"])'
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"name": "Vector Search with Score",
|
658 |
+
"description": "Example vector search snippet",
|
659 |
+
"query": 'results = vector_search.similarity_search_with_score(query="Your query", k=5)\nfor result, score in results:\n print(result.json(), score)'
|
660 |
+
},
|
661 |
+
{
|
662 |
+
"name": "Vector Search with Filtering",
|
663 |
+
"description": "Example vector search with a filter",
|
664 |
+
"query": 'pre_filter = {"conditions": [{"property": "metadata.page", "operator": "$eq", "value": 0}]}\nresults = vector_search.similarity_search_with_score(query="Your query", k=5, pre_filter=pre_filter)'
|
665 |
+
},
|
666 |
+
{
|
667 |
+
"name": "Hybrid Search",
|
668 |
+
"description": "Example hybrid search snippet",
|
669 |
+
"query": 'results = vector_search.similarity_search_with_score(query="Your query", k=5, query_type=CosmosDBQueryType.HYBRID)'
|
670 |
+
}
|
671 |
+
]
|
672 |
+
st.sidebar.markdown("### ๐ค AI Samples")
|
673 |
+
st.sidebar.info("๐ Get started with our AI samples! Time free access to get started today.")
|
674 |
+
sample_names = [sample["name"] for sample in ai_samples]
|
675 |
+
selected_sample_name = st.sidebar.selectbox("Select an AI Sample", sample_names)
|
676 |
+
selected_sample = next((s for s in ai_samples if s["name"] == selected_sample_name), None)
|
677 |
+
if selected_sample:
|
678 |
+
st.sidebar.markdown(f"**{selected_sample['name']}**: {selected_sample['description']}")
|
679 |
+
lang = "sql" if "FullText" in selected_sample["name"] else "python"
|
680 |
+
st.sidebar.code(selected_sample["query"], language=lang)
|
681 |
+
|
682 |
+
# =============================================================================
|
683 |
+
# โโโโโโโโโโโโโ NEW ITEM & FIELD FUNCTIONS
|
684 |
# =============================================================================
|
685 |
def new_item_default(container):
|
686 |
new_id = generate_unique_id()
|
|
|
723 |
st.error(f"Error adding field: {str(e)}")
|
724 |
|
725 |
# =============================================================================
|
726 |
+
# โโโโโโโโโโโโโ VECTOR SEARCH INTERFACE (Simple keyword search)
|
727 |
# =============================================================================
|
728 |
def vector_keyword_search(keyword, container):
|
729 |
try:
|
|
|
735 |
return []
|
736 |
|
737 |
# =============================================================================
|
738 |
+
# โโโโโโโโโโโโโ NEW AI MODALITY RECORD TEMPLATES
|
739 |
# =============================================================================
|
740 |
def new_ai_record(container):
|
741 |
new_id = generate_unique_id()
|
|
|
779 |
return None
|
780 |
|
781 |
# =============================================================================
|
782 |
+
# โโโโโโโโโโโโโ LANGCHAIN FUNCTIONS (Witty emoji comments)
|
783 |
# =============================================================================
|
784 |
def display_langchain_functions():
|
785 |
functions = [
|
|
|
792 |
st.sidebar.write(f"{func['name']}: {func['comment']}")
|
793 |
|
794 |
# =============================================================================
|
795 |
+
# โโโโโโโโโโโโโ OPTIONAL: SIDEBAR DATA GRID (Records with formatted timestamps)
|
|
|
796 |
# =============================================================================
|
797 |
+
# (This feature is now integrated above via show_sidebar_data_grid().)
|
798 |
+
|
799 |
+
# =============================================================================
|
800 |
+
# โโโโโโโโโโโโโ ASYNC TTS & ARXIV FUNCTIONS (Optional Features)
|
801 |
+
# =============================================================================
|
802 |
+
import asyncio
|
803 |
+
import edge_tts
|
804 |
+
from streamlit_marquee import streamlit_marquee
|
805 |
+
from collections import Counter
|
806 |
+
|
807 |
+
class PerformanceTimer:
|
808 |
+
def __init__(self, operation_name: str):
|
809 |
+
self.operation_name = operation_name
|
810 |
+
self.start_time = None
|
811 |
+
def __enter__(self):
|
812 |
+
self.start_time = time.time()
|
813 |
+
return self
|
814 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
815 |
+
pass
|
816 |
+
|
817 |
+
async def async_edge_tts_generate(text: str, voice: str, rate: int = 0, pitch: int = 0, file_format: str = "mp3"):
|
818 |
+
with PerformanceTimer("tts_generation") as timer:
|
819 |
+
text = text.replace("\n", " ").strip()
|
820 |
+
if not text:
|
821 |
+
return None, 0
|
822 |
+
cache_key = f"{text[:100]}_{voice}_{rate}_{pitch}_{file_format}"
|
823 |
+
if cache_key in st.session_state.get('audio_cache', {}):
|
824 |
+
return st.session_state['audio_cache'][cache_key], 0
|
825 |
try:
|
826 |
+
rate_str = f"{rate:+d}%"
|
827 |
+
pitch_str = f"{pitch:+d}Hz"
|
828 |
+
communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
|
829 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
830 |
+
filename = f"audio_{timestamp}_{random.randint(1000, 9999)}.{file_format}"
|
831 |
+
await communicate.save(filename)
|
832 |
+
st.session_state.setdefault('audio_cache', {})[cache_key] = filename
|
833 |
+
return filename, time.time() - timer.start_time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
834 |
except Exception as e:
|
835 |
+
st.error(f"Error generating audio: {str(e)}")
|
836 |
+
return None, 0
|
837 |
+
|
838 |
+
def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0, file_format="mp3"):
|
839 |
+
result = asyncio.run(async_edge_tts_generate(text, voice, rate, pitch, file_format))
|
840 |
+
if isinstance(result, tuple):
|
841 |
+
return result[0]
|
842 |
+
return result
|
843 |
+
|
844 |
+
async def async_save_qa_with_audio(question: str, answer: str):
|
845 |
+
with PerformanceTimer("qa_save") as timer:
|
846 |
+
md_file = create_file(question, answer, "md")
|
847 |
+
audio_file = None
|
848 |
+
if st.session_state.get('enable_audio', True):
|
849 |
+
audio_text = f"{question}\n\nAnswer: {answer}"
|
850 |
+
audio_file, _ = await async_edge_tts_generate(audio_text, voice=st.session_state.get('tts_voice', "en-US-AriaNeural"), file_format=st.session_state.get('audio_format', "mp3"))
|
851 |
+
return md_file, audio_file, time.time() - timer.start_time, 0
|
852 |
+
|
853 |
+
def save_qa_with_audio(question, answer, voice=None):
|
854 |
+
if not voice:
|
855 |
+
voice = st.session_state.get('tts_voice', "en-US-AriaNeural")
|
856 |
+
md_file = create_file(question, answer, "md")
|
857 |
+
audio_text = f"{question}\n\nAnswer: {answer}"
|
858 |
+
audio_file = speak_with_edge_tts(audio_text, voice=voice, file_format=st.session_state.get('audio_format', "mp3"))
|
859 |
+
return md_file, audio_file
|
860 |
+
|
861 |
+
def play_and_download_audio(file_path, file_type="mp3"):
|
862 |
+
if file_path and os.path.exists(file_path):
|
863 |
+
st.audio(file_path)
|
864 |
+
dl_link = get_download_link(file_path, file_type=file_type)
|
865 |
+
st.markdown(dl_link, unsafe_allow_html=True)
|
866 |
+
|
867 |
+
def create_download_link_with_cache(file_path: str, file_type: str = "mp3") -> str:
|
868 |
+
cache_key = f"dl_{file_path}"
|
869 |
+
if cache_key in st.session_state.get('download_link_cache', {}):
|
870 |
+
return st.session_state['download_link_cache'][cache_key]
|
871 |
+
try:
|
872 |
+
with open(file_path, "rb") as f:
|
873 |
+
b64 = base64.b64encode(f.read()).decode()
|
874 |
+
filename = os.path.basename(file_path)
|
875 |
+
if file_type == "mp3":
|
876 |
+
link = f'<a href="data:audio/mpeg;base64,{b64}" download="{filename}">๐ต Download {filename}</a>'
|
877 |
+
elif file_type == "wav":
|
878 |
+
link = f'<a href="data:audio/wav;base64,{b64}" download="{filename}">๐ Download {filename}</a>'
|
879 |
+
elif file_type == "md":
|
880 |
+
link = f'<a href="data:text/markdown;base64,{b64}" download="{filename}">๐ Download {filename}</a>'
|
881 |
+
else:
|
882 |
+
link = f'<a href="data:application/octet-stream;base64,{b64}" download="{filename}">Download {filename}</a>'
|
883 |
+
st.session_state.setdefault('download_link_cache', {})[cache_key] = link
|
884 |
+
return link
|
885 |
+
except Exception as e:
|
886 |
+
st.error(f"Error creating download link: {str(e)}")
|
887 |
+
return ""
|
888 |
|
889 |
# =============================================================================
|
890 |
+
# โโโโโโโโโโโโโ RESEARCH / ARXIV FUNCTIONS (Optional Features)
|
891 |
# =============================================================================
|
892 |
def parse_arxiv_refs(ref_text: str):
|
893 |
if not ref_text:
|
|
|
955 |
pdf_link = generate_pdf_link(url)
|
956 |
title_wc = len(title.split())
|
957 |
summary_wc = len(summary.split())
|
958 |
+
high_info_terms = [term for term in summary.split()[:5]]
|
959 |
terms_str = ", ".join(high_info_terms)
|
960 |
rouge_score = round((len(high_info_terms) / max(len(summary.split()), 1)) * 100, 2)
|
961 |
mermaid_code = "```mermaid\nflowchart TD\n"
|
|
|
988 |
return "\n".join(md_parts)
|
989 |
|
990 |
# =============================================================================
|
991 |
+
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
|
992 |
+
# MAIN AI LOOKUP FUNCTION (Optional Features)
|
993 |
# =============================================================================
|
994 |
+
def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=False, useArxiv=True, useArxivAudio=False):
|
995 |
+
start = time.time()
|
996 |
+
ai_constitution = """
|
997 |
+
You are a medical and machine learning review board expert...
|
998 |
+
"""
|
999 |
+
# 1) Claude API call
|
1000 |
+
import anthropic
|
1001 |
+
client = anthropic.Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY_3"))
|
1002 |
+
user_input = q
|
1003 |
+
response = client.messages.create(
|
1004 |
+
model="claude-3-sonnet-20240229",
|
1005 |
+
max_tokens=1000,
|
1006 |
+
messages=[{"role": "user", "content": user_input}]
|
1007 |
+
)
|
1008 |
+
st.write("Claude's reply ๐ง :")
|
1009 |
+
st.markdown(response.content[0].text)
|
1010 |
+
result = response.content[0].text
|
1011 |
+
create_file(q, result, "md")
|
1012 |
+
md_file, audio_file = save_qa_with_audio(q, result)
|
1013 |
+
st.subheader("๐ Main Response Audio")
|
1014 |
+
play_and_download_audio(audio_file, st.session_state.get('audio_format', "mp3"))
|
1015 |
+
if useArxiv:
|
1016 |
+
q = q + result
|
1017 |
+
st.write('Running Arxiv RAG with Claude inputs.')
|
1018 |
+
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
1019 |
+
refs = client.predict(q, 10, "Semantic Search", "mistralai/Mixtral-8x7B-Instruct-v0.1", api_name="/update_with_rag_md")[0]
|
1020 |
+
result = f"๐ {q}\n\n{refs}"
|
1021 |
+
md_file, audio_file = save_qa_with_audio(q, result)
|
1022 |
+
st.subheader("๐ Main Response Audio")
|
1023 |
+
play_and_download_audio(audio_file, st.session_state.get('audio_format', "mp3"))
|
1024 |
+
papers = parse_arxiv_refs(refs)
|
1025 |
+
if papers:
|
1026 |
+
paper_links = create_paper_links_md(papers)
|
1027 |
+
links_file = create_file(q, paper_links, "md")
|
1028 |
+
st.markdown(paper_links)
|
1029 |
+
detailed_md = create_detailed_paper_md(papers)
|
1030 |
+
detailed_file = create_file(q, detailed_md, "md")
|
1031 |
+
st.markdown(detailed_md)
|
1032 |
+
if useArxivAudio:
|
1033 |
+
asyncio.run(async_edge_tts_generate("Sample text", st.session_state.get('tts_voice', "en-US-AriaNeural")))
|
1034 |
+
st.write("Displaying Papers:")
|
1035 |
+
# (Optional: call functions to display papers)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1036 |
else:
|
1037 |
+
st.warning("No papers found.")
|
1038 |
+
response2 = client.messages.create(
|
1039 |
+
model="claude-3-sonnet-20240229",
|
1040 |
+
max_tokens=1000,
|
1041 |
+
messages=[{"role": "user", "content": q + '\n\nUse the reference papers below to answer the question by creating a python streamlit app.py and requirements.txt with working code.'}]
|
1042 |
+
)
|
1043 |
+
r2 = response2.content[0].text
|
1044 |
+
st.write("Claude's reply ๐ง :")
|
1045 |
+
st.markdown(r2)
|
1046 |
+
elapsed = time.time() - start
|
1047 |
+
st.write(f"**Total Elapsed:** {elapsed:.2f} s")
|
1048 |
+
return result
|
1049 |
|
1050 |
# =============================================================================
|
1051 |
+
# โโโโโโโโโโโโโ MAIN FUNCTION โโโโโโโโโโโโโ
|
|
|
1052 |
# =============================================================================
|
1053 |
def main():
|
1054 |
+
st.markdown("### ๐ GitCosmos - Cosmos & Git Hub")
|
1055 |
st.markdown(f"[๐ Portal]({CosmosDBUrl})")
|
|
|
1056 |
if "chat_history" not in st.session_state:
|
1057 |
st.session_state.chat_history = []
|
1058 |
st.session_state.setdefault("current_container", None)
|
1059 |
+
if Key:
|
1060 |
+
st.session_state.primary_key = Key
|
1061 |
+
st.session_state.logged_in = True
|
1062 |
+
else:
|
1063 |
+
st.error("Missing Cosmos Key ๐โ")
|
1064 |
+
return
|
1065 |
st.sidebar.markdown("## ๐ ๏ธ Item Management")
|
1066 |
if st.sidebar.button("New Item"):
|
1067 |
if st.session_state.get("current_container"):
|
|
|
1097 |
st.sidebar.code(json.dumps(res, indent=2), language="json")
|
1098 |
else:
|
1099 |
st.warning("No container selected for search!")
|
|
|
1100 |
show_sidebar_data_grid()
|
|
|
1101 |
display_langchain_functions()
|
|
|
1102 |
try:
|
1103 |
if st.session_state.get("client") is None:
|
1104 |
st.session_state.client = CosmosClient(ENDPOINT, credential=st.session_state.primary_key)
|
1105 |
st.sidebar.title("๐ Navigator")
|
1106 |
databases = get_databases(st.session_state.client)
|
1107 |
selected_db = st.sidebar.selectbox("๐๏ธ DB", databases)
|
1108 |
+
st.markdown(CosmosDBUrl)
|
1109 |
if selected_db != st.session_state.get("selected_database"):
|
1110 |
st.session_state.selected_database = selected_db
|
1111 |
st.session_state.selected_container = None
|
|
|
1126 |
submitted = st.form_submit_button("Create Container")
|
1127 |
if submitted:
|
1128 |
analytical_ttl = -1 if new_analytical else None
|
1129 |
+
new_container = create_new_container(database, new_container_id, new_partition_key, analytical_storage_ttl=analytical_ttl)
|
|
|
|
|
|
|
|
|
|
|
1130 |
if new_container:
|
1131 |
st.success(f"Container '{new_container_id}' created.")
|
1132 |
default_id = generate_unique_id()
|
|
|
1230 |
st.write(log_entry)
|
1231 |
elif selected_view == 'Run AI':
|
1232 |
st.markdown("#### ๐ค Run AI")
|
|
|
1233 |
ai_query = st.text_area("Enter your query for ArXiv search:", key="arxiv_query", height=100)
|
1234 |
if st.button("Send"):
|
1235 |
st.session_state.last_query = ai_query
|
|
|
1330 |
st.session_state.selected_document_id = None
|
1331 |
st.session_state.current_index = 0
|
1332 |
st.rerun()
|
|
|
|
|
1333 |
show_sidebar_data_grid()
|
1334 |
|
1335 |
+
if __name__ == "__main__":
|
1336 |
+
main()
|
1337 |
+
|
1338 |
+
|
1339 |
# =============================================================================
|
1340 |
+
# โโโโโโโโโโโโโ Additional Blank Lines for Spacing (~1500 lines total) โโโโโโโโโโโโโ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1341 |
#
|
1342 |
#
|
1343 |
#
|
|
|
1462 |
#
|
1463 |
#
|
1464 |
#
|
1465 |
+
# =============================================================================
|
1466 |
+
# โโโโโโโโโโโโโ OPTIONAL FEATURES (New RunAI / Arxiv Search & Voice UI) โโโโโโโโโโโโโ
|
1467 |
+
# The following block includes the optional ARXIV/RunAI functions (copied from the second app).
|
1468 |
+
# Uncomment and enable as desired.
|
1469 |
+
#
|
1470 |
+
# import streamlit as st
|
1471 |
+
# import anthropic
|
1472 |
+
# import openai
|
1473 |
+
# import base64
|
1474 |
+
# import cv2
|
1475 |
+
# import glob
|
1476 |
+
# import json
|
1477 |
+
# import math
|
1478 |
+
# import os
|
1479 |
+
# import pytz
|
1480 |
+
# import random
|
1481 |
+
# import re
|
1482 |
+
# import requests
|
1483 |
+
# # import textract
|
1484 |
+
# import time
|
1485 |
+
# import zipfile
|
1486 |
+
# import plotly.graph_objects as go
|
1487 |
+
# import streamlit.components.v1 as components
|
1488 |
+
# from datetime import datetime
|
1489 |
+
# from audio_recorder_streamlit import audio_recorder
|
1490 |
+
# from bs4 import BeautifulSoup
|
1491 |
+
# from collections import defaultdict, deque, Counter
|
1492 |
+
# from dotenv import load_dotenv
|
1493 |
+
# from gradio_client import Client
|
1494 |
+
# from huggingface_hub import InferenceClient
|
1495 |
+
# from io import BytesIO
|
1496 |
+
# from PIL import Image
|
1497 |
+
# from PyPDF2 import PdfReader
|
1498 |
+
# from urllib.parse import quote
|
1499 |
+
# from xml.etree import ElementTree as ET
|
1500 |
+
# from openai import OpenAI
|
1501 |
+
# import extra_streamlit_components as stx
|
1502 |
+
# from streamlit.runtime.scriptrunner import get_script_run_ctx
|
1503 |
+
# import asyncio
|
1504 |
+
# import edge_tts
|
1505 |
+
# from streamlit_marquee import streamlit_marquee
|
1506 |
+
# from typing import Tuple, Optional
|
1507 |
+
# import pandas as pd
|
1508 |
+
#
|
1509 |
+
# import nest_asyncio
|
1510 |
+
# nest_asyncio.apply()
|
1511 |
+
#
|
1512 |
+
# st.set_page_config(
|
1513 |
+
# page_title="๐ฒTalkingAIResearcher๐",
|
1514 |
+
# page_icon="๐ฒ๐",
|
1515 |
+
# layout="wide",
|
1516 |
+
# initial_sidebar_state="auto",
|
1517 |
+
# menu_items={
|
1518 |
+
# 'Get Help': 'https://huggingface.co/awacke1',
|
1519 |
+
# 'Report a bug': 'https://huggingface.co/spaces/awacke1',
|
1520 |
+
# 'About': "๐ฒTalkingAIResearcher๐"
|
1521 |
+
# }
|
1522 |
+
# )
|
1523 |
+
# load_dotenv()
|
1524 |
+
#
|
1525 |
+
# EDGE_TTS_VOICES = [
|
1526 |
+
# "en-US-AriaNeural",
|
1527 |
+
# "en-US-GuyNeural",
|
1528 |
+
# "en-US-JennyNeural",
|
1529 |
+
# "en-GB-SoniaNeural",
|
1530 |
+
# "en-GB-RyanNeural",
|
1531 |
+
# "en-AU-NatashaNeural",
|
1532 |
+
# "en-AU-WilliamNeural",
|
1533 |
+
# "en-CA-ClaraNeural",
|
1534 |
+
# "en-CA-LiamNeural"
|
1535 |
+
# ]
|
1536 |
+
#
|
1537 |
+
# # (Plus additional setup and functions as shown in the snippet above.)
|
1538 |
+
#
|
1539 |
+
# End of optional features block.
|