Spaces:
Runtime error
Runtime error
File size: 6,198 Bytes
656dbd6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import gradio as gr
import os
import shutil
import autogen
import chromadb
import multiprocessing as mp
from autogen.oai.openai_utils import config_list_from_json
from autogen.retrieve_utils import TEXT_FORMATS
from autogen.agentchat.contrib.retrieve_assistant_agent import RetrieveAssistantAgent
from autogen.agentchat.contrib.retrieve_user_proxy_agent import RetrieveUserProxyAgent, PROMPT_DEFAULT
def setup_configurations(config_file="OAI_CONFIG_LIST"):
config_list = autogen.config_list_from_json(
env_or_file=config_file,
file_location=".",
filter_dict={
"model": {
"gpt-4",
"gpt4",
"gpt-4-32k",
"gpt-4-32k-0314",
"gpt-35-turbo",
"gpt-3.5-turbo",
}
},
)
assert len(config_list) > 0
print("models to use: ", [config_list[i]["model"] for i in range(len(config_list))])
return config_list
def initialize_agents(config_list, docs_path=None):
if docs_path is None:
docs_path = "https://raw.githubusercontent.com/microsoft/autogen/main/README.md"
autogen.ChatCompletion.start_logging()
assistant = RetrieveAssistantAgent(
name="assistant",
system_message="You are a helpful assistant.",
llm_config={
"request_timeout": 600,
"seed": 42,
"config_list": config_list,
},
)
ragproxyagent = RetrieveUserProxyAgent(
name="ragproxyagent",
human_input_mode="NEVER",
max_consecutive_auto_reply=5,
retrieve_config={
# "task": "qa",
"docs_path": docs_path,
"chunk_token_size": 2000,
"model": config_list[0]["model"],
"client": chromadb.PersistentClient(path="/tmp/chromadb1"),
"embedding_model": "all-mpnet-base-v2",
"customized_prompt": PROMPT_DEFAULT,
},
)
return assistant, ragproxyagent
def initiate_chat(problem, queue, n_results=3):
global assistant, ragproxyagent
if assistant is None:
queue.put(["Please upload the LLM config file first"])
return
assistant.reset()
ragproxyagent.initiate_chat(assistant, problem=problem, silent=False, n_results=n_results)
# queue.put(ragproxyagent.last_message()["content"])
messages = ragproxyagent.chat_messages
messages = [messages[k] for k in messages.keys()][0]
messages = [m["content"] for m in messages if m["role"] == "user"]
print("messages: ", messages)
queue.put(messages)
def chatbot_reply(input_text):
"""Chat with the agent through terminal."""
queue = mp.Queue()
process = mp.Process(
target=initiate_chat,
args=(input_text, queue),
)
process.start()
process.join()
messages = queue.get()
return messages
def get_description_text():
return """
# Microsoft AutoGen: Retrieve Chat Demo
This demo shows how to use the RetrieveUserProxyAgent and RetrieveAssistantAgent to build a chatbot.
#### [GitHub](https://github.com/microsoft/autogen) [Discord](https://discord.gg/pAbnFJrkgZ) [Docs](https://microsoft.github.io/autogen/) [Paper](https://arxiv.org/abs/2308.08155)
LLM configure file should contain OpenAI, Azure OpenAI or other openai compatible models, for example:
```
[
{
"engine": "gpt-35-turbo",
"model": "gpt-3.5-turbo",
"api_base": "https://xxx.openai.azure.com",
"api_type": "azure",
"api_version": "2023-05-15",
"api_key": "xxx",
}
]
```
"""
global config_list, assistant, ragproxyagent
assistant = None
with gr.Blocks() as demo:
gr.Markdown(get_description_text())
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
bubble_full_width=False,
avatar_images=(None, (os.path.join(os.path.dirname(__file__), "autogen.png"))),
height=600,
)
with gr.Row():
txt_input = gr.Textbox(
scale=4,
show_label=False,
placeholder="Enter text and press enter",
container=False,
)
def upload_file(file):
global config_list, assistant, ragproxyagent
config_list = setup_configurations(config_file=file.name)
assistant, ragproxyagent = initialize_agents(config_list)
upload_button = gr.UploadButton("Click to Upload LLM Config File", file_types=["file"], file_count="single")
upload_button.upload(upload_file, upload_button)
clear = gr.ClearButton([txt_input, chatbot])
txt_context_url = gr.Textbox(
label="Enter the url to your context file and chat on the context",
info=f"File must be in the format of [{', '.join(TEXT_FORMATS)}]",
max_lines=1,
show_label=True,
value="https://arxiv.org/pdf/2308.08155.pdf",
container=True,
)
txt_prompt = gr.Textbox(
label="Enter your prompt for Retrieve Agent and press enter to replace the default prompt",
max_lines=40,
show_label=True,
value=PROMPT_DEFAULT,
container=True,
show_copy_button=True,
layout={"height": 20},
)
def respond(message, chat_history):
messages = chatbot_reply(message)
chat_history.append((message, messages[-1] if messages[-1] != "TERMINATE" else messages[-2]))
return "", chat_history
def update_prompt(prompt):
ragproxyagent.customized_prompt = prompt
return prompt
def update_context_url(context_url):
global assistant, ragproxyagent
try:
shutil.rmtree("/tmp/chromadb1/")
except:
pass
assistant, ragproxyagent = initialize_agents(config_list, docs_path=context_url)
return context_url
txt_input.submit(respond, [txt_input, chatbot], [txt_input, chatbot])
txt_prompt.submit(update_prompt, [txt_prompt], [txt_prompt])
txt_context_url.submit(update_context_url, [txt_context_url], [txt_context_url])
if __name__ == "__main__":
demo.launch(share=True)
|