File size: 8,827 Bytes
656dbd6
 
 
148eb69
656dbd6
 
 
 
 
ef42390
 
c67f638
ef42390
656dbd6
 
c977014
ddae919
 
93abe5d
ddae919
656dbd6
 
 
 
 
 
 
 
 
 
 
 
 
 
b112116
656dbd6
 
ddae919
efe6986
656dbd6
c67f638
656dbd6
 
 
 
 
 
c977014
 
ddae919
 
 
 
 
b112116
656dbd6
ddae919
c977014
 
6c454ed
ddae919
 
 
c977014
ddae919
656dbd6
372fa9f
 
 
 
 
 
 
 
 
 
656dbd6
 
 
 
 
 
 
 
c977014
656dbd6
 
372fa9f
656dbd6
 
 
ef42390
656dbd6
 
 
 
 
 
93abe5d
656dbd6
 
ef42390
c977014
93abe5d
656dbd6
ddae919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c977014
ddae919
656dbd6
 
 
 
 
 
7a5cdb3
656dbd6
ef42390
 
 
 
 
 
 
 
656dbd6
ddae919
 
 
c977014
ddae919
c977014
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f6e4ef
c977014
 
ddae919
1f6e4ef
ddae919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c977014
ddae919
 
ef42390
 
1f6e4ef
ef42390
 
 
 
 
 
 
 
1f6e4ef
ef42390
 
 
 
 
 
 
 
1f6e4ef
ef42390
 
 
 
 
 
 
656dbd6
 
5bed7ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
656dbd6
 
 
 
 
148eb69
656dbd6
 
 
 
 
c977014
 
 
 
656dbd6
ef42390
 
 
656dbd6
 
 
 
 
ef42390
656dbd6
 
 
efe6986
656dbd6
 
c977014
656dbd6
ef42390
c977014
656dbd6
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import gradio as gr
import os
import shutil
import openai
import autogen
import chromadb
import multiprocessing as mp
from autogen.retrieve_utils import TEXT_FORMATS
from autogen.agentchat.contrib.retrieve_assistant_agent import RetrieveAssistantAgent
from autogen.agentchat.contrib.retrieve_user_proxy_agent import (
    RetrieveUserProxyAgent,
    PROMPT_CODE,
)


def initialize_agents(config_list, docs_path=None):
    if isinstance(config_list, gr.State):
        _config_list = config_list.value
    else:
        _config_list = config_list
    if docs_path is None:
        docs_path = "https://raw.githubusercontent.com/microsoft/autogen/main/README.md"
    autogen.ChatCompletion.start_logging()

    assistant = RetrieveAssistantAgent(
        name="assistant",
        system_message="You are a helpful assistant.",
    )

    ragproxyagent = RetrieveUserProxyAgent(
        name="ragproxyagent",
        human_input_mode="NEVER",
        max_consecutive_auto_reply=5,
        retrieve_config={
            "task": "code",
            "docs_path": docs_path,
            "chunk_token_size": 2000,
            "model": _config_list[0]["model"],
            "client": chromadb.PersistentClient(path="/tmp/chromadb"),
            "embedding_model": "all-mpnet-base-v2",
            "customized_prompt": PROMPT_CODE,
        },
    )

    return assistant, ragproxyagent


def initiate_chat(config_list, problem, queue, n_results=3):
    global assistant, ragproxyagent
    if isinstance(config_list, gr.State):
        _config_list = config_list.value
    else:
        _config_list = config_list
    if len(_config_list[0].get("api_key", "")) < 2:
        queue.put(["Hi, nice to meet you! Please enter your API keys in below text boxs."])
        return
    else:
        llm_config = (
            {
                "request_timeout": 30,
                "seed": 42,
                "config_list": _config_list,
            },
        )
        assistant.llm_config.update(llm_config[0])
    assistant.reset()
    try:
        ragproxyagent.initiate_chat(
            assistant, problem=problem, silent=False, n_results=n_results
        )
        messages = ragproxyagent.chat_messages
        messages = [messages[k] for k in messages.keys()][0]
        messages = [m["content"] for m in messages if m["role"] == "user"]
        print("messages: ", messages)
    except Exception as e:
        messages = [str(e)]
    queue.put(messages)


def chatbot_reply(input_text):
    """Chat with the agent through terminal."""
    queue = mp.Queue()
    process = mp.Process(
        target=initiate_chat,
        args=(config_list, input_text, queue),
    )
    process.start()
    process.join()
    messages = queue.get()
    return messages


def get_description_text():
    return """
    # Microsoft AutoGen: Retrieve Chat Demo
    
    This demo shows how to use the RetrieveUserProxyAgent and RetrieveAssistantAgent to build a chatbot.

    #### [GitHub](https://github.com/microsoft/autogen)    [Discord](https://discord.gg/pAbnFJrkgZ)    [Docs](https://microsoft.github.io/autogen/)    [Paper](https://arxiv.org/abs/2308.08155)
    """


global assistant, ragproxyagent

with gr.Blocks() as demo:
    config_list, assistant, ragproxyagent = (
        gr.State(
            [
                {
                    "api_key": "",
                    "api_base": "",
                    "api_type": "azure",
                    "api_version": "2023-07-01-preview",
                    "model": "gpt-35-turbo",
                }
            ]
        ),
        None,
        None,
    )
    assistant, ragproxyagent = initialize_agents(config_list)

    gr.Markdown(get_description_text())
    chatbot = gr.Chatbot(
        [],
        elem_id="chatbot",
        bubble_full_width=False,
        avatar_images=(None, (os.path.join(os.path.dirname(__file__), "autogen.png"))),
        # height=600,
    )

    txt_input = gr.Textbox(
        scale=4,
        show_label=False,
        placeholder="Enter text and press enter",
        container=False,
    )

    with gr.Row():
        def update_config(config_list):
            global assistant, ragproxyagent
            config_list = autogen.config_list_from_models(
                model_list=[os.environ.get("MODEL", "gpt-35-turbo")],
            )
            if not config_list:
                config_list = [
                    {
                        "api_key": "",
                        "api_base": "",
                        "api_type": "azure",
                        "api_version": "2023-07-01-preview",
                        "model": "gpt-35-turbo",
                    }
                ]
            llm_config = (
                {
                    "request_timeout": 120,
                    "seed": 42,
                    "config_list": config_list,
                },
            )
            assistant.llm_config.update(llm_config[0])
            ragproxyagent._model = config_list[0]["model"]
            return config_list

        def set_params(model, oai_key, aoai_key, aoai_base):
            os.environ["MODEL"] = model
            os.environ["OPENAI_API_KEY"] = oai_key
            os.environ["AZURE_OPENAI_API_KEY"] = aoai_key
            os.environ["AZURE_OPENAI_API_BASE"] = aoai_base
            return model, oai_key, aoai_key, aoai_base

        txt_model = gr.Dropdown(
            label="Model",
            choices=[
                "gpt-4",
                "gpt-35-turbo",
                "gpt-3.5-turbo",
            ],
            allow_custom_value=True,
            value="gpt-35-turbo",
            container=True,
        )
        txt_oai_key = gr.Textbox(
            label="OpenAI API Key",
            placeholder="Enter key and press enter",
            max_lines=1,
            show_label=True,
            value=os.environ.get("OPENAI_API_KEY", ""),
            container=True,
            type="password",
        )
        txt_aoai_key = gr.Textbox(
            label="Azure OpenAI API Key",
            placeholder="Enter key and press enter",
            max_lines=1,
            show_label=True,
            value=os.environ.get("AZURE_OPENAI_API_KEY", ""),
            container=True,
            type="password",
        )
        txt_aoai_base_url = gr.Textbox(
            label="Azure OpenAI API Base",
            placeholder="Enter base url and press enter",
            max_lines=1,
            show_label=True,
            value=os.environ.get("AZURE_OPENAI_API_BASE", ""),
            container=True,
            type="password",
        )

    clear = gr.ClearButton([txt_input, chatbot])

    with gr.Row():        
        def upload_file(file):
            update_context_url(file.name)

        upload_button = gr.UploadButton(
            "Click to upload a context file or enter a url in the right textbox",
            file_types=[f".{i}" for i in TEXT_FORMATS],
            file_count="single",
        )
        upload_button.upload(upload_file, upload_button)

        txt_context_url = gr.Textbox(
            label="Enter the url to your context file and chat on the context",
            info=f"File must be in the format of [{', '.join(TEXT_FORMATS)}]",
            max_lines=1,
            show_label=True,
            value="https://raw.githubusercontent.com/microsoft/autogen/main/README.md",
            container=True,
        )

    txt_prompt = gr.Textbox(
        label="Enter your prompt for Retrieve Agent and press enter to replace the default prompt",
        max_lines=40,
        show_label=True,
        value=PROMPT_CODE,
        container=True,
        show_copy_button=True,
        layout={"height": 20},
    )

    def respond(message, chat_history, model, oai_key, aoai_key, aoai_base):
        global config_list
        set_params(model, oai_key, aoai_key, aoai_base)
        config_list = update_config(config_list)
        messages = chatbot_reply(message)
        chat_history.append(
            (message, messages[-1] if messages[-1] != "TERMINATE" else messages[-2])
        )
        return "", chat_history

    def update_prompt(prompt):
        ragproxyagent.customized_prompt = prompt
        return prompt

    def update_context_url(context_url):
        global assistant, ragproxyagent
        try:
            shutil.rmtree("/tmp/chromadb/")
        except:
            pass
        assistant, ragproxyagent = initialize_agents(config_list, docs_path=context_url)
        return context_url

    txt_input.submit(respond, [txt_input, chatbot, txt_model, txt_oai_key, txt_aoai_key, txt_aoai_base_url], [txt_input, chatbot])
    txt_prompt.submit(update_prompt, [txt_prompt], [txt_prompt])
    txt_context_url.submit(update_context_url, [txt_context_url], [txt_context_url])


if __name__ == "__main__":
    demo.launch(share=True)