Spaces:
Runtime error
Runtime error
File size: 36,286 Bytes
3fb45c5 18e41a1 09bd973 18e41a1 a0feab3 09bd973 18e41a1 a0feab3 a08b1c9 18e41a1 f49990d 18e41a1 f57fd10 18e41a1 7844ece a08b1c9 7844ece 6fdb778 75aa023 d36cb08 0bc666d d36cb08 6fdb778 b3ff8e7 6eae6cf b3ff8e7 6eae6cf b3ff8e7 6eae6cf b3ff8e7 09bd973 1e4ffa7 18e41a1 09bd973 bb18704 b3b9ed7 bb18704 4a8f717 1ed00a7 4a8f717 bb18704 182f76e bb18704 2ec9286 d61b72f 2ec9286 d61b72f 2ec9286 d36cb08 bb18704 6ab9b23 520e6e1 6ab9b23 dc74f0c 0280a6a d36cb08 8f14145 d36cb08 8f14145 24a753a aebecba 24a753a bb18704 4a8f717 0280a6a d36cb08 bb18704 4a8f717 0280a6a d36cb08 8f14145 e95063c 1e4ffa7 bb18704 e95063c 2f6bcce e95063c bb18704 1e4ffa7 d36cb08 1e4ffa7 d36cb08 1e4ffa7 d36cb08 1e4ffa7 0dee2f1 1e4ffa7 d36cb08 0dee2f1 1e4ffa7 0dee2f1 b78085f d105d10 dbcba60 d105d10 b78085f d105d10 d36cb08 d105d10 b78085f d105d10 18e41a1 d36cb08 18e41a1 a0feab3 18e41a1 d36cb08 18e41a1 d36cb08 18e41a1 d36cb08 18e41a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 |
import huggingface_hub
from huggingface_hub import InferenceClient
import streamlit as st
import streamlit.components.v1 as components
import openai
import os
import base64
import glob
import io
import json
import mistune
import pytz
import math
import requests
import sys
import time
import re
import textract
import zipfile
import random
from datetime import datetime
from openai import ChatCompletion
from xml.etree import ElementTree as ET
from bs4 import BeautifulSoup
from collections import deque
from audio_recorder_streamlit import audio_recorder
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from templates import css, bot_template, user_template
from io import BytesIO
import streamlit.components.v1 as components # Import Streamlit Components for HTML5
# page config and sidebar declares up front allow all other functions to see global class variables
st.set_page_config(page_title="AI Human Body - Homunculus Body Reasoner", layout="wide")
should_save = st.sidebar.checkbox("πΎ Save", value=True)
col1, col2, col3, col4 = st.columns(4)
with col1:
with st.expander("Settings π§ πΎ", expanded=True):
# File type for output, model choice
menu = ["txt", "htm", "xlsx", "csv", "md", "py"]
choice = st.sidebar.selectbox("Output File Type:", menu)
model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))
# Define a context dictionary to maintain the state between exec calls
context = {}
def SpeechSynthesis(result):
documentHTML5='''
<!DOCTYPE html>
<html>
<head>
<title>Read It Aloud</title>
<script type="text/javascript">
function readAloud() {
const text = document.getElementById("textArea").value;
const speech = new SpeechSynthesisUtterance(text);
window.speechSynthesis.speak(speech);
}
</script>
</head>
<body>
<h1>π Read It Aloud</h1>
<textarea id="textArea" rows="10" cols="80">
'''
documentHTML5 = documentHTML5 + result
documentHTML5 = documentHTML5 + '''
</textarea>
<br>
<button onclick="readAloud()">π Read Aloud</button>
</body>
</html>
'''
components.html(documentHTML5, width=1280, height=1024)
#return result
def create_file(filename, prompt, response, should_save=True):
if not should_save:
return
# Extract base filename without extension
base_filename, ext = os.path.splitext(filename)
# Initialize the combined content
combined_content = ""
# Add Prompt with markdown title and emoji
combined_content += "# Prompt π\n" + prompt + "\n\n"
# Add Response with markdown title and emoji
combined_content += "# Response π¬\n" + response + "\n\n"
# Check for code blocks in the response
resources = re.findall(r"```([\s\S]*?)```", response)
for resource in resources:
# Check if the resource contains Python code
if "python" in resource.lower():
# Remove the 'python' keyword from the code block
cleaned_code = re.sub(r'^\s*python', '', resource, flags=re.IGNORECASE | re.MULTILINE)
# Add Code Results title with markdown and emoji
combined_content += "# Code Results π\n"
# Redirect standard output to capture it
original_stdout = sys.stdout
sys.stdout = io.StringIO()
# Execute the cleaned Python code within the context
try:
exec(cleaned_code, context)
code_output = sys.stdout.getvalue()
combined_content += f"```\n{code_output}\n```\n\n"
realtimeEvalResponse = "# Code Results π\n" + "```" + code_output + "```\n\n"
st.write(realtimeEvalResponse)
except Exception as e:
combined_content += f"```python\nError executing Python code: {e}\n```\n\n"
# Restore the original standard output
sys.stdout = original_stdout
else:
# Add non-Python resources with markdown and emoji
combined_content += "# Resource π οΈ\n" + "```" + resource + "```\n\n"
# Save the combined content to a Markdown file
if should_save:
with open(f"{base_filename}.md", 'w') as file:
file.write(combined_content)
# Read it aloud
def readitaloud(result):
documentHTML5='''
<!DOCTYPE html>
<html>
<head>
<title>Read It Aloud</title>
<script type="text/javascript">
function readAloud() {
const text = document.getElementById("textArea").value;
const speech = new SpeechSynthesisUtterance(text);
window.speechSynthesis.speak(speech);
}
</script>
</head>
<body>
<h1>π Read It Aloud</h1>
<textarea id="textArea" rows="10" cols="80">
'''
documentHTML5 = documentHTML5 + result
documentHTML5 = documentHTML5 + '''
</textarea>
<br>
<button onclick="readAloud()">π Read Aloud</button>
</body>
</html>
'''
components.html(documentHTML5, width=800, height=300)
#return result
def generate_filename(prompt, file_type):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
# 3. Stream Llama Response
# @st.cache_resource
def StreamLLMChatResponse(prompt):
# My Inference API Copy
API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud' # Dr Llama
API_KEY = os.getenv('API_KEY')
#try:
endpoint_url = API_URL
hf_token = API_KEY
client = InferenceClient(endpoint_url, token=hf_token)
gen_kwargs = dict(
max_new_tokens=512,
top_k=30,
top_p=0.9,
temperature=0.2,
repetition_penalty=1.02,
stop_sequences=["\nUser:", "<|endoftext|>", "</s>"],
)
stream = client.text_generation(prompt, stream=True, details=True, **gen_kwargs)
report=[]
res_box = st.empty()
collected_chunks=[]
collected_messages=[]
allresults=''
for r in stream:
if r.token.special:
continue
if r.token.text in gen_kwargs["stop_sequences"]:
break
collected_chunks.append(r.token.text)
chunk_message = r.token.text
collected_messages.append(chunk_message)
#try:
report.append(r.token.text)
if len(r.token.text) > 0:
result="".join(report).strip()
res_box.markdown(f'*{result}*')
#except:
#st.write('Stream llm issue')
SpeechSynthesis(result)
return result
#except:
#st.write('Llama model is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).')
# Chat and Chat with files
def chat_with_model(prompt, document_section, model_choice='gpt-3.5-turbo'):
model = model_choice
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
conversation.append({'role': 'user', 'content': prompt})
if len(document_section)>0:
conversation.append({'role': 'assistant', 'content': document_section})
start_time = time.time()
report = []
res_box = st.empty()
collected_chunks = []
collected_messages = []
key = os.getenv('OPENAI_API_KEY')
openai.api_key = key
for chunk in openai.ChatCompletion.create(
model='gpt-3.5-turbo',
messages=conversation,
temperature=0.5,
stream=True
):
collected_chunks.append(chunk) # save the event response
chunk_message = chunk['choices'][0]['delta'] # extract the message
collected_messages.append(chunk_message) # save the message
content=chunk["choices"][0].get("delta",{}).get("content")
try:
report.append(content)
if len(content) > 0:
result = "".join(report).strip()
res_box.markdown(f'*{result}*')
except:
st.write(' ')
full_reply_content = ''.join([m.get('content', '') for m in collected_messages])
st.write("Elapsed time:")
st.write(time.time() - start_time)
readitaloud(full_reply_content)
filename = generate_filename(full_reply_content, choice)
create_file(filename, prompt, full_reply_content, should_save)
return full_reply_content
def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'):
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
conversation.append({'role': 'user', 'content': prompt})
if len(file_content)>0:
conversation.append({'role': 'assistant', 'content': file_content})
response = openai.ChatCompletion.create(model=model_choice, messages=conversation)
return response['choices'][0]['message']['content']
def link_button_with_emoji(url, title, emoji_summary):
emojis = ["π", "π₯", "π‘οΈ", "π©Ί", "π¬", "π", "π§ͺ", "π¨ββοΈ", "π©ββοΈ"]
random_emoji = random.choice(emojis)
st.markdown(f"[{random_emoji} {emoji_summary} - {title}]({url})")
# Homunculus parts and their corresponding emojis
homunculus_parts = {
"Head": "π§ ", "Brain": "π§ ", "Left Eye": "ποΈ", "Right Eye": "ποΈ",
"Left Eyebrow": "π€¨", "Right Eyebrow": "π€¨", "Nose": "π",
"Mouth": "π", "Neck": "π§£", "Left Shoulder": "πͺ",
"Right Shoulder": "πͺ", "Left Upper Arm": "πͺ",
"Right Upper Arm": "πͺ", "Left Elbow": "πͺ",
"Right Elbow": "πͺ", "Left Forearm": "πͺ",
"Right Forearm": "πͺ", "Left Wrist": "β",
"Right Wrist": "β", "Left Hand": "π€²",
"Right Hand": "π€²", "Chest": "π",
"Abdomen": "π", "Pelvis": "π©²",
"Left Hip": "π¦΅", "Right Hip": "π¦΅",
"Left Thigh": "π¦΅", "Right Thigh": "π¦΅",
"Left Knee": "π¦΅", "Right Knee": "π¦΅",
"Left Shin": "π¦΅", "Right Shin": "π¦΅"
}
homunculus_parts_extended = {
"Head": "π§ (Center of Thought and Control)",
"Brain": "π§ (Organ of Intelligence and Processing)",
"Left Eye": "ποΈ (Vision and Perception - Left)",
"Right Eye": "ποΈ (Vision and Perception - Right)",
"Left Eyebrow": "π€¨ (Facial Expression - Left Eyebrow)",
"Right Eyebrow": "π€¨ (Facial Expression - Right Eyebrow)",
"Nose": "π (Smell and Breathing)",
"Mouth": "π (Speech and Eating)",
"Neck": "π§£ (Support and Movement of Head)",
"Left Shoulder": "πͺ (Arm Movement and Strength - Left)",
"Right Shoulder": "πͺ (Arm Movement and Strength - Right)",
"Left Upper Arm": "πͺ (Support and Lifting - Left Upper)",
"Right Upper Arm": "πͺ (Support and Lifting - Right Upper)",
"Left Elbow": "πͺ (Arm Bending and Flexing - Left)",
"Right Elbow": "πͺ (Arm Bending and Flexing - Right)",
"Left Forearm": "πͺ (Wrist and Hand Movement - Left)",
"Right Forearm": "πͺ (Wrist and Hand Movement - Right)",
"Left Wrist": "β (Hand Articulation and Rotation - Left)",
"Right Wrist": "β (Hand Articulation and Rotation - Right)",
"Left Hand": "π€² (Grasping and Touch - Left)",
"Right Hand": "π€² (Grasping and Touch - Right)",
"Chest": "π (Protection of Heart and Lungs)",
"Abdomen": "π (Digestive Organs and Processing)",
"Pelvis": "π©² (Support for Lower Limbs and Organs)",
"Left Hip": "𦡠(Support and Movement - Left Hip)",
"Right Hip": "𦡠(Support and Movement - Right Hip)",
"Left Thigh": "𦡠(Support and Movement - Left Thigh)",
"Right Thigh": "𦡠(Support and Movement - Right Thigh)",
"Left Knee": "𦡠(Leg Bending and Flexing - Left)",
"Right Knee": "𦡠(Leg Bending and Flexing - Right)",
"Left Shin": "𦡠(Lower Leg Support - Left)",
"Right Shin": "𦡠(Lower Leg Support - Right)",
"Left Foot": "π¦Ά (Support, Balance, and Locomotion - Left)",
"Right Foot": "π¦Ά (Support, Balance, and Locomotion - Right)"
}
# Function to display the homunculus parts with expanders and chat buttons
def display_homunculus_parts():
st.title("Homunculus Model")
with st.expander(f"Head ({homunculus_parts_extended['Head']})", expanded=False):
head_parts = ["Left Eye", "Right Eye", "Left Eyebrow", "Right Eyebrow", "Nose", "Mouth"]
for part in head_parts:
# Extracting the function/description from the extended dictionary
part_description = homunculus_parts_extended[part].split('(')[1].rstrip(')')
prompt = f"Learn about the key features and functions of the {part} - {part_description}"
if st.button(f"Explore {part}", key=part):
#response = chat_with_model(prompt, part) # GPT
response = StreamLLMChatResponse(prompt) # Llama
with st.expander(f"Brain ({homunculus_parts['Brain']})", expanded=False):
brain_parts = {
"Neocortex": "π - Involved in higher-order brain functions such as sensory perception, cognition, and spatial reasoning.",
"Limbic System": "β€οΈ - Supports functions including emotion, behavior, motivation, long-term memory, and olfaction.",
"Brainstem": "π± - Controls basic body functions like breathing, swallowing, heart rate, blood pressure, and consciousness.",
"Cerebellum": "π§© - Coordinates voluntary movements like posture, balance, and speech, resulting in smooth muscular activity.",
"Thalamus": "π - Channels sensory and motor signals to the cerebral cortex, and regulates consciousness and sleep.",
"Hypothalamus": "π‘οΈ - Controls body temperature, hunger, thirst, fatigue, and circadian cycles.",
"Hippocampus": "π - Essential for the formation of new memories and associated with learning and emotions.",
"Frontal Lobe": "π‘ - Associated with decision making, problem solving, and planning.",
"Parietal Lobe": "π€ - Processes sensory information it receives from the outside world, mainly relating to spatial sense and navigation.",
"Temporal Lobe": "π - Involved in processing auditory information and is also important for the processing of semantics in both speech and vision.",
"Occipital Lobe": "ποΈ - Main center for visual processing."
}
for part, description in brain_parts.items():
# Formatting the prompt in markdown style for enhanced learning
prompt = f"Create a markdown outline with emojis to explain the {part} and its role in the brain: {description}"
if st.button(f"Explore {part} π§ ", key=part):
#response = chat_with_model(prompt, part)
response = StreamLLMChatResponse(prompt) # Llama
# Displaying central body parts
central_parts = ["Neck", "Chest", "Abdomen", "Pelvis"]
for part in central_parts:
with st.expander(f"{part} ({homunculus_parts_extended[part]})", expanded=False):
prompt = f"Learn about the key features and functions of the {part} - {homunculus_parts_extended[part].split(' ')[-1]}"
if st.button(f"Explore {part} π§£", key=part):
#response = chat_with_model(prompt, part)
response = StreamLLMChatResponse(prompt) # Llama
# Displaying symmetric body parts
symmetric_parts = ["Shoulder", "Upper Arm", "Elbow", "Forearm", "Wrist", "Hand", "Hip", "Thigh", "Knee", "Shin", "Foot"]
for part in symmetric_parts:
col1, col2 = st.columns(2)
with col1:
with st.expander(f"Left {part} ({homunculus_parts_extended[f'Left {part}']})", expanded=False):
prompt = f"Learn about the key features and functions of the Left {part} - {homunculus_parts_extended[f'Left {part}'].split(' ')[-1]}"
if st.button(f"Explore Left {part} πͺ", key=f"Left {part}"):
#response = chat_with_model(prompt, f"Left {part}")
response = StreamLLMChatResponse(prompt) # Llama
with col2:
with st.expander(f"Right {part} ({homunculus_parts_extended[f'Right {part}']})", expanded=False):
prompt = f"Learn about the key features and functions of the Right {part} - {homunculus_parts_extended[f'Right {part}'].split(' ')[-1]}"
if st.button(f"Explore Right {part} πͺ", key=f"Right {part}"):
#response = chat_with_model(prompt, f"Right {part}")
response = StreamLLMChatResponse(prompt) # Llama
# Define function to add paper buttons and links
def add_paper_buttons_and_links():
# Homunculus
page = st.sidebar.radio("Choose a page:", ["Detailed Homunculus Model"])
if page == "Detailed Homunculus Model":
display_homunculus_parts()
col1, col2, col3, col4 = st.columns(4)
with col1:
with st.expander("MemGPT π§ πΎ", expanded=False):
link_button_with_emoji("https://arxiv.org/abs/2310.08560", "MemGPT", "π§ πΎ Memory OS")
outline_memgpt = "Memory Hierarchy, Context Paging, Self-directed Memory Updates, Memory Editing, Memory Retrieval, Preprompt Instructions, Semantic Memory, Episodic Memory, Emotional Contextual Understanding"
if st.button("Discuss MemGPT Features"):
prompt = "Discuss the key features of MemGPT: " + outline_memgpt
#chat_with_model(prompt, "MemGPT")
response = StreamLLMChatResponse(prompt) # Llama
with col2:
with st.expander("AutoGen π€π", expanded=False):
link_button_with_emoji("https://arxiv.org/abs/2308.08155", "AutoGen", "π€π Multi-Agent LLM")
outline_autogen = "Cooperative Conversations, Combining Capabilities, Complex Task Solving, Divergent Thinking, Factuality, Highly Capable Agents, Generic Abstraction, Effective Implementation"
if st.button("Explore AutoGen Multi-Agent LLM"):
prompt = "Explore the key features of AutoGen: " + outline_autogen
#chat_with_model(prompt, "AutoGen")
response = StreamLLMChatResponse(prompt) # Llama
with col3:
with st.expander("Whisper ππ§βπ", expanded=False):
link_button_with_emoji("https://arxiv.org/abs/2212.04356", "Whisper", "ππ§βπ Robust STT")
outline_whisper = "Scaling, Deep Learning Approaches, Weak Supervision, Zero-shot Transfer Learning, Accuracy & Robustness, Pre-training Techniques, Broad Range of Environments, Combining Multiple Datasets"
if st.button("Learn About Whisper STT"):
prompt = "Learn about the key features of Whisper: " + outline_whisper
#chat_with_model(prompt, "Whisper")
response = StreamLLMChatResponse(prompt) # Llama
with col4:
with st.expander("ChatDev π¬π»", expanded=False):
link_button_with_emoji("https://arxiv.org/pdf/2307.07924.pdf", "ChatDev", "π¬π» Comm. Agents")
outline_chatdev = "Effective Communication, Comprehensive Software Solutions, Diverse Social Identities, Tailored Codes, Environment Dependencies, User Manuals"
if st.button("Deep Dive into ChatDev"):
prompt = "Deep dive into the features of ChatDev: " + outline_chatdev
#chat_with_model(prompt, "ChatDev")
response = StreamLLMChatResponse(prompt) # Llama
add_paper_buttons_and_links()
# Process user input is a post processor algorithm which runs after document embedding vector DB play of GPT on context of documents..
def process_user_input(user_question):
# Check and initialize 'conversation' in session state if not present
if 'conversation' not in st.session_state:
st.session_state.conversation = {} # Initialize with an empty dictionary or an appropriate default value
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
template = user_template if i % 2 == 0 else bot_template
st.write(template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
# Save file output from PDF query results
filename = generate_filename(user_question, 'txt')
create_file(filename, user_question, message.content, should_save)
# New functionality to create expanders and buttons
create_expanders_and_buttons(message.content)
def create_expanders_and_buttons(content):
# Split the content into paragraphs
paragraphs = content.split("\n\n")
for paragraph in paragraphs:
# Identify the header and detail in the paragraph
header, detail = extract_feature_and_detail(paragraph)
if header and detail:
with st.expander(header, expanded=False):
if st.button(f"Explore {header}"):
expanded_outline = "Expand on the feature: " + detail
#chat_with_model(expanded_outline, header)
response = StreamLLMChatResponse(expanded_outline) # Llama
def extract_feature_and_detail(paragraph):
# Use regex to find the header and detail in the paragraph
match = re.match(r"(.*?):(.*)", paragraph)
if match:
header = match.group(1).strip()
detail = match.group(2).strip()
return header, detail
return None, None
def transcribe_audio(file_path, model):
key = os.getenv('OPENAI_API_KEY')
headers = {
"Authorization": f"Bearer {key}",
}
with open(file_path, 'rb') as f:
data = {'file': f}
st.write("Read file {file_path}", file_path)
OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
if response.status_code == 200:
st.write(response.json())
prompt = response.json().get('text')
chatResponse = chat_with_model(prompt, '') # *************************************
response = StreamLLMChatResponse(prompt) # Llama
transcript = response.json().get('text')
#st.write('Responses:')
#st.write(chatResponse)
filename = generate_filename(transcript, 'txt')
#create_file(filename, transcript, chatResponse)
response = chatResponse
user_prompt = transcript
create_file(filename, user_prompt, response, should_save)
return transcript
else:
st.write(response.json())
st.error("Error in API call.")
return None
def save_and_play_audio(audio_recorder):
audio_bytes = audio_recorder()
if audio_bytes:
filename = generate_filename("Recording", "wav")
with open(filename, 'wb') as f:
f.write(audio_bytes)
st.audio(audio_bytes, format="audio/wav")
return filename
return None
def truncate_document(document, length):
return document[:length]
def divide_document(document, max_length):
return [document[i:i+max_length] for i in range(0, len(document), max_length)]
def get_table_download_link(file_path):
with open(file_path, 'r') as file:
try:
data = file.read()
except:
st.write('')
return file_path
b64 = base64.b64encode(data.encode()).decode()
file_name = os.path.basename(file_path)
ext = os.path.splitext(file_name)[1] # get the file extension
if ext == '.txt':
mime_type = 'text/plain'
elif ext == '.py':
mime_type = 'text/plain'
elif ext == '.xlsx':
mime_type = 'text/plain'
elif ext == '.csv':
mime_type = 'text/plain'
elif ext == '.htm':
mime_type = 'text/html'
elif ext == '.md':
mime_type = 'text/markdown'
else:
mime_type = 'application/octet-stream' # general binary data type
href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
return href
def CompressXML(xml_text):
root = ET.fromstring(xml_text)
for elem in list(root.iter()):
if isinstance(elem.tag, str) and 'Comment' in elem.tag:
elem.parent.remove(elem)
return ET.tostring(root, encoding='unicode', method="xml")
def read_file_content(file,max_length):
if file.type == "application/json":
content = json.load(file)
return str(content)
elif file.type == "text/html" or file.type == "text/htm":
content = BeautifulSoup(file, "html.parser")
return content.text
elif file.type == "application/xml" or file.type == "text/xml":
tree = ET.parse(file)
root = tree.getroot()
xml = CompressXML(ET.tostring(root, encoding='unicode'))
return xml
elif file.type == "text/markdown" or file.type == "text/md":
md = mistune.create_markdown()
content = md(file.read().decode())
return content
elif file.type == "text/plain":
return file.getvalue().decode()
else:
return ""
def extract_mime_type(file):
# Check if the input is a string
if isinstance(file, str):
pattern = r"type='(.*?)'"
match = re.search(pattern, file)
if match:
return match.group(1)
else:
raise ValueError(f"Unable to extract MIME type from {file}")
# If it's not a string, assume it's a streamlit.UploadedFile object
elif isinstance(file, streamlit.UploadedFile):
return file.type
else:
raise TypeError("Input should be a string or a streamlit.UploadedFile object")
def extract_file_extension(file):
# get the file name directly from the UploadedFile object
file_name = file.name
pattern = r".*?\.(.*?)$"
match = re.search(pattern, file_name)
if match:
return match.group(1)
else:
raise ValueError(f"Unable to extract file extension from {file_name}")
def pdf2txt(docs):
text = ""
for file in docs:
file_extension = extract_file_extension(file)
# print the file extension
st.write(f"File type extension: {file_extension}")
# read the file according to its extension
try:
if file_extension.lower() in ['py', 'txt', 'html', 'htm', 'xml', 'json']:
text += file.getvalue().decode('utf-8')
elif file_extension.lower() == 'pdf':
from PyPDF2 import PdfReader
pdf = PdfReader(BytesIO(file.getvalue()))
for page in range(len(pdf.pages)):
text += pdf.pages[page].extract_text() # new PyPDF2 syntax
except Exception as e:
st.write(f"Error processing file {file.name}: {e}")
return text
def txt2chunks(text):
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len)
return text_splitter.split_text(text)
def vector_store(text_chunks):
key = os.getenv('OPENAI_API_KEY')
embeddings = OpenAIEmbeddings(openai_api_key=key)
return FAISS.from_texts(texts=text_chunks, embedding=embeddings)
def get_chain(vectorstore):
llm = ChatOpenAI()
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(), memory=memory)
def divide_prompt(prompt, max_length):
words = prompt.split()
chunks = []
current_chunk = []
current_length = 0
for word in words:
if len(word) + current_length <= max_length:
current_length += len(word) + 1 # Adding 1 to account for spaces
current_chunk.append(word)
else:
chunks.append(' '.join(current_chunk))
current_chunk = [word]
current_length = len(word)
chunks.append(' '.join(current_chunk)) # Append the final chunk
return chunks
def create_zip_of_files(files):
"""
Create a zip file from a list of files.
"""
zip_name = "all_files.zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for file in files:
zipf.write(file)
return zip_name
def get_zip_download_link(zip_file):
"""
Generate a link to download the zip file.
"""
with open(zip_file, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
return href
def main():
# Audio, transcribe, GPT:
filename = save_and_play_audio(audio_recorder)
if filename is not None:
try:
transcription = transcribe_audio(filename, "whisper-1")
except:
st.write(' ')
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
filename = None
# prompt interfaces
user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)
# file section interface for prompts against large documents as context
collength, colupload = st.columns([2,3]) # adjust the ratio as needed
with collength:
max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
with colupload:
uploaded_file = st.file_uploader("Add a file for context:", type=["pdf", "xml", "json", "xlsx", "csv", "html", "htm", "md", "txt"])
# Document section chat
document_sections = deque()
document_responses = {}
if uploaded_file is not None:
file_content = read_file_content(uploaded_file, max_length)
document_sections.extend(divide_document(file_content, max_length))
if len(document_sections) > 0:
if st.button("ποΈ View Upload"):
st.markdown("**Sections of the uploaded file:**")
for i, section in enumerate(list(document_sections)):
st.markdown(f"**Section {i+1}**\n{section}")
st.markdown("**Chat with the model:**")
for i, section in enumerate(list(document_sections)):
if i in document_responses:
st.markdown(f"**Section {i+1}**\n{document_responses[i]}")
else:
if st.button(f"Chat about Section {i+1}"):
st.write('Reasoning with your inputs...')
#response = chat_with_model(user_prompt, section, model_choice)
response = StreamLLMChatResponse(user_prompt + ' ' + section) # Llama
st.write('Response:')
st.write(response)
document_responses[i] = response
filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
create_file(filename, user_prompt, response, should_save)
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
if st.button('π¬ Chat'):
st.write('Reasoning with your inputs...')
# Divide the user_prompt into smaller sections
user_prompt_sections = divide_prompt(user_prompt, max_length)
full_response = ''
for prompt_section in user_prompt_sections:
# Process each section with the model
#response = chat_with_model(prompt_section, ''.join(list(document_sections)), model_choice)
response = StreamLLMChatResponse(prompt_section + ''.join(list(document_sections))) # Llama
full_response += response + '\n' # Combine the responses
response = full_response
st.write('Response:')
st.write(response)
filename = generate_filename(user_prompt, choice)
create_file(filename, user_prompt, response, should_save)
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
all_files = glob.glob("*.*")
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20] # exclude files with short names
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order
# Sidebar buttons Download All and Delete All
colDownloadAll, colDeleteAll = st.sidebar.columns([3,3])
with colDownloadAll:
if st.button("β¬οΈ Download All"):
zip_file = create_zip_of_files(all_files)
st.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
with colDeleteAll:
if st.button("π Delete All"):
for file in all_files:
os.remove(file)
st.experimental_rerun()
# Sidebar of Files Saving History and surfacing files as context of prompts and responses
file_contents=''
next_action=''
for file in all_files:
col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1]) # adjust the ratio as needed
with col1:
if st.button("π", key="md_"+file): # md emoji button
with open(file, 'r') as f:
file_contents = f.read()
next_action='md'
with col2:
st.markdown(get_table_download_link(file), unsafe_allow_html=True)
with col3:
if st.button("π", key="open_"+file): # open emoji button
with open(file, 'r') as f:
file_contents = f.read()
next_action='open'
with col4:
if st.button("π", key="read_"+file): # search emoji button
with open(file, 'r') as f:
file_contents = f.read()
next_action='search'
with col5:
if st.button("π", key="delete_"+file):
os.remove(file)
st.experimental_rerun()
if len(file_contents) > 0:
if next_action=='open':
file_content_area = st.text_area("File Contents:", file_contents, height=500)
if next_action=='md':
st.markdown(file_contents)
if next_action=='search':
file_content_area = st.text_area("File Contents:", file_contents, height=500)
st.write('Reasoning with your inputs...')
#response = chat_with_model(user_prompt, file_contents, model_choice)
response = StreamLLMChatResponse(user_prompt + ' ' + file_contents) # Llama
filename = generate_filename(file_contents, choice)
create_file(filename, user_prompt, response, should_save)
st.experimental_rerun()
if __name__ == "__main__":
main()
load_dotenv()
st.write(css, unsafe_allow_html=True)
st.header("Chat with documents :books:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
process_user_input(user_question)
with st.sidebar:
st.subheader("Your documents")
docs = st.file_uploader("import documents", accept_multiple_files=True)
with st.spinner("Processing"):
raw = pdf2txt(docs)
if len(raw) > 0:
length = str(len(raw))
text_chunks = txt2chunks(raw)
vectorstore = vector_store(text_chunks)
st.session_state.conversation = get_chain(vectorstore)
st.markdown('# AI Search Index of Length:' + length + ' Created.') # add timing
filename = generate_filename(raw, 'txt')
create_file(filename, raw, '', should_save)
|