import streamlit as st import time # Initialize the slide index in session state (if not already set) if "slide_idx" not in st.session_state: st.session_state.slide_idx = 0 # Define a list of 10 slides. Each slide has a left and a right page. # Each paper entry contains the paper number, title, arXiv link, and code link. slides = [ { "left": """ **#1. Neural Module Networks for Reasoning** [Arxiv](https://arxiv.org/abs/1234.5678) | [Code](https://github.com/example/nnm) **#2. Neuro-Symbolic AI for Reasoning** [Arxiv](https://arxiv.org/abs/2345.6789) | [Code](https://github.com/example/nsa) """, "right": """ **#3. Transformer Models for Multi-step Reasoning** [Arxiv](https://arxiv.org/abs/3456.7890) | [Code](https://github.com/example/transformer) **#4. Graph Neural Networks in AI** [Arxiv](https://arxiv.org/abs/4567.8901) | [Code](https://github.com/example/gnn) """ }, { "left": """ **#5. Memory-Augmented Networks for Episodic Recall** [Arxiv](https://arxiv.org/abs/5678.9012) | [Code](https://github.com/example/memory) **#6. Self-Supervised Learning for AI** [Arxiv](https://arxiv.org/abs/6789.0123) | [Code](https://github.com/example/selfsup) """, "right": """ **#7. Reinforcement Learning from Human Feedback** [Arxiv](https://arxiv.org/abs/7890.1234) | [Code](https://github.com/example/rlhf) **#8. Transfer Learning in AI Systems** [Arxiv](https://arxiv.org/abs/8901.2345) | [Code](https://github.com/example/transfer) """ }, { "left": """ **#9. Deep Learning for Medical Imaging** [Arxiv](https://arxiv.org/abs/9012.3456) | [Code](https://github.com/example/medimg) **#10. Computer Vision in Telemedicine** [Arxiv](https://arxiv.org/abs/0123.4567) | [Code](https://github.com/example/cvtele) """, "right": """ **#11. Automated Clinical Documentation via NLP** [Arxiv](https://arxiv.org/abs/1234.5679) | [Code](https://github.com/example/clinicalnlp) **#12. Real-Time Transcription and Analysis** [Arxiv](https://arxiv.org/abs/2345.6780) | [Code](https://github.com/example/realtime) """ }, { "left": """ **#13. Personalized Treatment Recommendation** [Arxiv](https://arxiv.org/abs/3456.7891) | [Code](https://github.com/example/treatment) **#14. Integration of Genomic Data in AI** [Arxiv](https://arxiv.org/abs/4567.8902) | [Code](https://github.com/example/genomics) """, "right": """ **#15. Crowdsourcing in AI Evaluation** [Arxiv](https://arxiv.org/abs/5678.9013) | [Code](https://github.com/example/crowd) **#16. Evaluating AI with Human Feedback** [Arxiv](https://arxiv.org/abs/6789.0124) | [Code](https://github.com/example/evaluation) """ }, { "left": """ **#17. Gradio and Streamlit for Rapid Prototyping** [Arxiv](https://arxiv.org/abs/7890.1235) | [Code](https://github.com/example/gradio) **#18. Interactive Demos in Python** [Arxiv](https://arxiv.org/abs/8901.2346) | [Code](https://github.com/example/interactive) """, "right": """ **#19. HPC for Scaling AI Models** [Arxiv](https://arxiv.org/abs/9012.3457) | [Code](https://github.com/example/hpc) **#20. Model Parallelism and Pipeline Techniques** [Arxiv](https://arxiv.org/abs/0123.4568) | [Code](https://github.com/example/parallel) """ }, { "left": """ **#21. Imitation Learning for Behavior Cloning** [Arxiv](https://arxiv.org/abs/1234.5680) | [Code](https://github.com/example/imitate) **#22. GANs for Mirroring Human Actions** [Arxiv](https://arxiv.org/abs/2345.6781) | [Code](https://github.com/example/ganmirror) """, "right": """ **#23. Empathic AI for Shared World Modeling** [Arxiv](https://arxiv.org/abs/3456.7892) | [Code](https://github.com/example/empathic) **#24. Deep Reinforcement Learning in Clinical Support** [Arxiv](https://arxiv.org/abs/4567.8903) | [Code](https://github.com/example/deeprl) """ }, { "left": """ **#25. Mixture of Experts for AI Systems** [Arxiv](https://arxiv.org/abs/5678.9014) | [Code](https://github.com/example/moe) **#26. Conditional Computation and Routing Strategies** [Arxiv](https://arxiv.org/abs/6789.0125) | [Code](https://github.com/example/routing) """, "right": """ **#27. Ensemble Learning in AI** [Arxiv](https://arxiv.org/abs/7890.1236) | [Code](https://github.com/example/ensemble) **#28. Knowledge Distillation Across Models** [Arxiv](https://arxiv.org/abs/8901.2347) | [Code](https://github.com/example/distill) """ }, { "left": """ **#29. Neural Networks for Adversarial Attacks** [Arxiv](https://arxiv.org/abs/9012.3458) | [Code](https://github.com/example/adversary) **#30. Robust Training with Natural Transformations** [Arxiv](https://arxiv.org/abs/0123.4569) | [Code](https://github.com/example/robust) """, "right": """ **#31. Text-to-Image Translation with GANs** [Arxiv](https://arxiv.org/abs/1234.5681) | [Code](https://github.com/example/t2i) **#32. Controlled Caption Generation via Adversarial Attacks** [Arxiv](https://arxiv.org/abs/2345.6782) | [Code](https://github.com/example/caption) """ }, { "left": """ **#33. Multi-Modal Autoencoders for Medical Data** [Arxiv](https://arxiv.org/abs/3456.7893) | [Code](https://github.com/example/multimodal) **#34. Integration of Vision and Language in Healthcare** [Arxiv](https://arxiv.org/abs/4567.8904) | [Code](https://github.com/example/visionlang) """, "right": """ **#35. Reinforcement Learning for Medical QA Systems** [Arxiv](https://arxiv.org/abs/5678.9015) | [Code](https://github.com/example/medicalqa) **#36. Large-Scale Clinical Language Models** [Arxiv](https://arxiv.org/abs/6789.0126) | [Code](https://github.com/example/clinicalllm) """ }, { "left": """ **#37. Efficient Transformers for Clinical NLP** [Arxiv](https://arxiv.org/abs/7890.1237) | [Code](https://github.com/example/lightllm) **#38. Continual Learning for Medical AI** [Arxiv](https://arxiv.org/abs/8901.2348) | [Code](https://github.com/example/continual) """, "right": """ **#39. Active Learning for AI Annotation** [Arxiv](https://arxiv.org/abs/9012.3459) | [Code](https://github.com/example/active) **#40. Automated Model Selection and Routing** [Arxiv](https://arxiv.org/abs/0123.4570) | [Code](https://github.com/example/modelselect) """ } ] num_slides = len(slides) current_slide = slides[st.session_state.slide_idx] # Display slide header (e.g. "Slide 1 of 10") st.markdown(f"## Slide {st.session_state.slide_idx + 1} of {num_slides}") # Display left and right pages side by side col_left, col_right = st.columns(2) with col_left: st.markdown("### Left Page") st.markdown(current_slide["left"], unsafe_allow_html=True) with col_right: st.markdown("### Right Page") st.markdown(current_slide["right"], unsafe_allow_html=True) # Countdown timer (15 seconds) for auto-advancement for remaining in range(15, 0, -1): st.markdown(f"**Advancing in {remaining} seconds...**") time.sleep(1) # Advance to the next slide (wrap around if at the end) st.session_state.slide_idx = (st.session_state.slide_idx + 1) % num_slides # Rerun the app to display the next slide st.rerun()