awacke1 commited on
Commit
f78af80
·
verified ·
1 Parent(s): 0393691

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +256 -0
app.py ADDED
@@ -0,0 +1,256 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+ # Initialize the slide groups in session state on first run.
4
+ if "slide_groups" not in st.session_state:
5
+ st.session_state.slide_groups = [
6
+ {
7
+ "group": "Slide 1: Introduction",
8
+ "content": r"""
9
+ **Title:** AI Toolbox: 20 Papers in 5 Minutes
10
+ **Goal:** Show how these topics (Torch, Ollama, Deepseek, SFT, knowledge distillation, crowdsourcing, etc.) tie together into an end-to-end AI pipeline.
11
+ **Media:** Quick intro audio & a short video clip highlighting AI breakthroughs.
12
+ """
13
+ },
14
+ {
15
+ "group": "Slides 2–3: Torch (PyTorch Foundations)",
16
+ "content": r"""
17
+ **Paper 1**
18
+ *Reference:* Paszke, A. et al. “PyTorch: An Imperative Style, High-Performance Deep Learning Library.” arXiv:1912.01703 (2019)
19
+ *Key Points:*
20
+ - Dynamic computation graphs for rapid prototyping.
21
+ - Strong GPU acceleration and broad community support.
22
+ *Presentation Element:* Brief code snippet in Python + a Mermaid flowchart showing how forward/backprop flows in PyTorch.
23
+
24
+ **Paper 2**
25
+ *Reference:* Paszke, A. et al. “Automatic Differentiation in PyTorch.” arXiv:1707.?? (Hypothetical reference)
26
+ *Key Points:*
27
+ - Core mechanism behind autograd.
28
+ - How tensor operations are tracked and reversed for gradients.
29
+ *Presentation Element:* Minimal slides highlighting computational graph merges with HPC concepts.
30
+ """
31
+ },
32
+ {
33
+ "group": "Slides 4–5: Ollama & LLaMA-Based Models",
34
+ "content": r"""
35
+ **Paper 3**
36
+ *Reference:* Touvron, H. et al. “LLaMA: Open and Efficient Foundation Language Models.” arXiv:2302.13971 (2023)
37
+ *Key Points:*
38
+ - Architecture, training efficiency, and open-source benefits.
39
+ - Relevance to Ollama (lightweight local LLaMA inference).
40
+ *Presentation Element:* Short video demo of an Ollama prompt or model reply.
41
+
42
+ **Paper 4**
43
+ *Reference:* Zhang, M. et al. “Exploring LLaMA Derivatives for Local Inference.” arXiv:2303.???? (Hypothetical)
44
+ *Key Points:*
45
+ - Techniques for running large models on consumer-grade hardware.
46
+ - Model quantization, CPU/GPU scheduling.
47
+ *Presentation Element:* Mermaid sequence diagram comparing server-based vs. local inference pipelines.
48
+ """
49
+ },
50
+ {
51
+ "group": "Slides 6–7: Deepseek MoE + Chain of Thought (CoT)",
52
+ "content": r"""
53
+ **Paper 5**
54
+ *Reference:* Fedus, W., Zoph, B., Shazeer, N. “Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity.” arXiv:2101.03961 (2021)
55
+ *Key Points:*
56
+ - Mixture-of-Experts (MoE) approach to scale large models.
57
+ - Efficiency gains via sparse routing.
58
+ *Presentation Element:* Visual MoE block diagram with color-coded experts.
59
+
60
+ **Paper 6**
61
+ *Reference:* Wei, J. et al. “Chain-of-Thought Prompting Elicits Reasoning in Large Language Models.” arXiv:2201.11903 (2022)
62
+ *Key Points:*
63
+ - Step-by-step reasoning prompts improve logical consistency.
64
+ - Potential synergy with MoE for specialized “reasoning experts.”
65
+ *Presentation Element:* Mermaid mind map illustrating short CoT vs. detailed CoT.
66
+ """
67
+ },
68
+ {
69
+ "group": "Slides 8–9: Hugging Face SFT Trainer",
70
+ "content": r"""
71
+ **Paper 7**
72
+ *Reference:* Wolf, T. et al. “Transformers: State-of-the-Art Natural Language Processing.” arXiv:1910.03771 (2020)
73
+ *Key Points:*
74
+ - Core library behind Hugging Face’s ecosystem.
75
+ - Transformer architecture fundamentals.
76
+ *Presentation Element:* Show how SFTTrainer (hypothetical name) builds on Trainer for supervised finetuning.
77
+
78
+ **Paper 8**
79
+ *Reference:* Houlsby, N. et al. “Parameter-Efficient Transfer Learning for NLP.” arXiv:1902.00751 (2019)
80
+ *Key Points:*
81
+ - Techniques like adapters, LoRA, or selective layer freezing.
82
+ - Impact on training efficiency and model size.
83
+ *Presentation Element:* A side-by-side bar chart showing reduction in GPU hours with parameter-efficient methods.
84
+ """
85
+ },
86
+ {
87
+ "group": "Slides 10–11: Knowledge Distillation & Mermaid Graphs",
88
+ "content": r"""
89
+ **Paper 9**
90
+ *Reference:* Hinton, G., Vinyals, O., Dean, J. “Distilling the Knowledge in a Neural Network.” arXiv:1503.02531 (2015)
91
+ *Key Points:*
92
+ - Transfer knowledge from large “teacher” models to small “student” models.
93
+ - Temperature scaling and teacher-student training.
94
+ *Presentation Element:* Mermaid flowchart detailing teacher–student relationships.
95
+
96
+ **Paper 10**
97
+ *Reference:* Chen, X. et al. “Graph-Based Knowledge Distillation for Neural Networks.” arXiv:2105.???? (Hypothetical)
98
+ *Key Points:*
99
+ - Represent model layers and hidden states as nodes & edges.
100
+ - Synergy with SFT and domain adaptation.
101
+ *Presentation Element:* Mermaid graph diagram linking teacher network nodes to student network nodes.
102
+ """
103
+ },
104
+ {
105
+ "group": "Slides 12–13: Crowdsourcing & Agents for Evaluation",
106
+ "content": r"""
107
+ **Paper 11**
108
+ *Reference:* Callison-Burch, C. “Fast, Cheap, and Creative: Evaluating Translation Quality Using Amazon’s Mechanical Turk.” arXiv:0907.5225 (2009)
109
+ *Key Points:*
110
+ - Crowdsourcing pipeline for large-scale text evaluation.
111
+ - Reliability strategies: gold standards, inter-annotator agreement.
112
+ *Presentation Element:* Timeline comparing tasks for crowdworkers vs. automated agents.
113
+
114
+ **Paper 12**
115
+ *Reference:* Nie, Y. et al. “Adversarial NLI: A New Benchmark for Natural Language Understanding.” arXiv:1910.14599 (2019)
116
+ *Key Points:*
117
+ - Human-and-model-in-the-loop adversarial examples.
118
+ - Incremental data curation to improve robustness.
119
+ *Presentation Element:* Short audio explanation of adversarial example refinement.
120
+ """
121
+ },
122
+ {
123
+ "group": "Slides 14–15: Python + Gradio/Streamlit",
124
+ "content": r"""
125
+ **Paper 13**
126
+ *Reference:* Abid, A. et al. “Gradio: A User Interface for Interactive Machine Learning.” arXiv:2101.???? (Hypothetical)
127
+ *Key Points:*
128
+ - Build quick demos and capture user feedback.
129
+ - Invaluable for crowdsourced data collection and real-time model updates.
130
+ *Presentation Element:* 10-second video demo of a Gradio UI (e.g. a chatbot or image classifier).
131
+
132
+ **Paper 14**
133
+ *Reference:* [Streamlit Team], “Streamlit: Democratizing Data App Creation.” arXiv:2004.???? (Hypothetical)
134
+ *Key Points:*
135
+ - Turning Python scripts into web apps effortlessly.
136
+ - Useful for HPC dashboards and debugging distributed training.
137
+ *Presentation Element:* Animated slides showing how to add interactive widgets with minimal code.
138
+ """
139
+ },
140
+ {
141
+ "group": "Slides 16–17: HPC for Python-Based AI",
142
+ "content": r"""
143
+ **Paper 15**
144
+ *Reference:* Shoeybi, M. et al. “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.” arXiv:1909.08053 (2019)
145
+ *Key Points:*
146
+ - Scaling large models via model parallelism on HPC clusters.
147
+ - Integration with NVIDIA libraries (e.g. NCCL).
148
+ *Presentation Element:* Mermaid architecture diagram illustrating parallel pipelines.
149
+
150
+ **Paper 16**
151
+ *Reference:* Huang, Y. et al. “GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism.” arXiv:1811.06965 (2019)
152
+ *Key Points:*
153
+ - Overlap of communication and computation for HPC efficiency.
154
+ - Synergy with MoE or large LLaMA models.
155
+ *Presentation Element:* Throughput vs. latency charts and an HPC cluster image.
156
+ """
157
+ },
158
+ {
159
+ "group": "Slides 18–19: Semantic & Episodic Memory + RLHF",
160
+ "content": r"""
161
+ **Paper 17**
162
+ *Reference:* Ouyang, X. et al. “Integrating Episodic and Semantic Memory for Task-Oriented Dialogue.” arXiv:2105.???? (Hypothetical)
163
+ *Key Points:*
164
+ - Differentiate short-term episodic from long-term semantic context.
165
+ - Improves consistency and factual correctness in dialogue.
166
+ *Presentation Element:* Mermaid diagram contrasting ephemeral vs. persistent memory flows.
167
+
168
+ **Paper 18**
169
+ *Reference:* Ouyang, X. et al. “Training Language Models to Follow Instructions with Human Feedback.” arXiv:2203.02155 (2022)
170
+ *Key Points:*
171
+ - Reinforcement Learning from Human Feedback (RLHF).
172
+ - Align model outputs with user preferences and ethical guidelines.
173
+ *Presentation Element:* RLHF pseudo-code snippet and a timeline of preference collection.
174
+ """
175
+ },
176
+ {
177
+ "group": "Slides 20–21: Transfer Learning & “Learning for Good”",
178
+ "content": r"""
179
+ **Paper 19**
180
+ *Reference:* Ruder, S. “A Survey on Transfer Learning for NLP.” arXiv:1910.?? (2019)
181
+ *Key Points:*
182
+ - Overview of transfer learning strategies (fine-tuning, adapters, multitask learning).
183
+ - Quickly customize large pre-trained models.
184
+ *Presentation Element:* Graph of performance gains vs. training time.
185
+
186
+ **Paper 20**
187
+ *Reference:* Zhang, Y., Yang, Q. “A Survey on Multi-Task Learning.” arXiv:1707.08114 (2017)
188
+ *Key Points:*
189
+ - Train one model on multiple tasks to share representations.
190
+ - Synergy with “Learning for Good” scenarios (e.g., medical, climate).
191
+ *Presentation Element:* Mermaid multi-task diagram showing convergence in shared layers.
192
+ """
193
+ },
194
+ {
195
+ "group": "Slide 22: Closing & Next Steps",
196
+ "content": r"""
197
+ **Key Takeaways:**
198
+ - **Integration:** Every paper contributes to an end-to-end AI pipeline—from HPC scaling to crowdsourced evaluation.
199
+ - **Modular Approach:** Combining PyTorch, Hugging Face SFT, and knowledge distillation leads to efficient model development.
200
+ - **Interactive Demonstrations:** Leveraging Gradio/Streamlit and RLHF creates user-friendly, human-centric AI experiences.
201
+ - **Future Work:** Explore deeper synergies among MoE, HPC, and memory-based architectures.
202
+
203
+ **Media:**
204
+ - Concluding audio clip.
205
+ - (Optionally) a final Mermaid diagram linking all stages: data ingestion → HPC training → crowdsourcing → RLHF → model deployment.
206
+ """
207
+ }
208
+ ]
209
+ st.session_state.current_index = 0 # Initialize the current slide index
210
+
211
+
212
+ # Set up the page configuration
213
+ st.set_page_config(page_title="AI Presentation Outline", layout="wide")
214
+ st.title("AI Toolbox Presentation Outline")
215
+
216
+ # Sidebar: Navigation and slide group addition
217
+ st.sidebar.header("Navigation")
218
+
219
+ # --- Option to add a new slide group ---
220
+ with st.sidebar.expander("Add New Slide Group"):
221
+ with st.form("new_slide_form"):
222
+ new_group = st.text_input("Slide Group Title")
223
+ new_content = st.text_area("Slide Group Content (Markdown)", height=200)
224
+ submitted = st.form_submit_button("Add Slide Group")
225
+ if submitted:
226
+ if new_group.strip() and new_content.strip():
227
+ st.session_state.slide_groups.append({
228
+ "group": new_group.strip(),
229
+ "content": new_content.strip()
230
+ })
231
+ st.success(f"Added slide group: {new_group}")
232
+ else:
233
+ st.error("Please provide both a title and content.")
234
+
235
+ # --- Slide group selector ---
236
+ slide_titles = [slide["group"] for slide in st.session_state.slide_groups]
237
+ # Use a selectbox whose index is synced with session_state.current_index
238
+ selected_index = st.sidebar.selectbox(
239
+ "Select Slide Group",
240
+ range(len(slide_titles)),
241
+ index=st.session_state.current_index,
242
+ format_func=lambda i: slide_titles[i]
243
+ )
244
+ st.session_state.current_index = selected_index
245
+
246
+ # --- Navigation buttons ---
247
+ cols = st.sidebar.columns(2)
248
+ if cols[0].button("⟨ Previous"):
249
+ st.session_state.current_index = max(st.session_state.current_index - 1, 0)
250
+ if cols[1].button("Next ⟩"):
251
+ st.session_state.current_index = min(st.session_state.current_index + 1, len(slide_titles) - 1)
252
+
253
+ # Main: Display the selected slide group's details
254
+ current_slide = st.session_state.slide_groups[st.session_state.current_index]
255
+ st.header(current_slide["group"])
256
+ st.markdown(current_slide["content"], unsafe_allow_html=True)