Spaces:
Sleeping
Sleeping
File size: 28,592 Bytes
f03b3f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 |
#!/usr/bin/env python3
import os
import re
import glob
import json
import base64
import zipfile
import random
import requests
import streamlit as st
import streamlit.components.v1 as components
import time
# If you do model inference via huggingface_hub:
# from huggingface_hub import InferenceClient
########################################################################################
# 1) GLOBAL CONFIG & PLACEHOLDERS
########################################################################################
BASE_URL = "https://huggingface.co/spaces/awacke1/MermaidMarkdownDiagramEditor"
BASE_URL = ""
PromptPrefix = "AI-Search: "
PromptPrefix2 = "AI-Refine: "
PromptPrefix3 = "AI-JS: "
roleplaying_glossary = {
"Core Rulebooks": {
"Dungeons and Dragons": ["Player's Handbook", "Dungeon Master's Guide", "Monster Manual"],
"GURPS": ["Basic Set Characters", "Basic Set Campaigns"]
},
"Campaigns & Adventures": {
"Pathfinder": ["Rise of the Runelords", "Curse of the Crimson Throne"]
}
}
transhuman_glossary = {
"Neural Interfaces": ["Cortex Jack", "Mind-Machine Fusion"],
"Cybernetics": ["Robotic Limbs", "Augmented Eyes"],
}
def process_text(text):
"""🕵️ process_text: detective style—prints lines to Streamlit for debugging."""
st.write(f"process_text called with: {text}")
def search_arxiv(text):
"""🔭 search_arxiv: pretend to search ArXiv, just prints debug."""
st.write(f"search_arxiv called with: {text}")
def SpeechSynthesis(text):
"""🗣 Simple logging for text-to-speech placeholders."""
st.write(f"SpeechSynthesis called with: {text}")
def process_image(image_file, prompt):
"""📷 Simple placeholder for image AI pipeline."""
return f"[process_image placeholder] {image_file} => {prompt}"
def process_video(video_file, seconds_per_frame):
"""🎞 Simple placeholder for video AI pipeline."""
st.write(f"[process_video placeholder] {video_file}, {seconds_per_frame} sec/frame")
API_URL = "https://huggingface-inference-endpoint-placeholder"
API_KEY = "hf_XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
@st.cache_resource
def InferenceLLM(prompt):
"""🔮 Stub returning mock response for 'prompt'."""
return f"[InferenceLLM placeholder response to prompt: {prompt}]"
########################################################################################
# 2) GLOSSARY & FILE UTILITY
########################################################################################
@st.cache_resource
def display_glossary_entity(k):
"""
Creates multiple link emojis for a single entity.
Each link might point to /?q=..., /?q=<prefix>..., or external sites.
"""
search_urls = {
"🚀🌌ArXiv": lambda x: f"/?q={quote(x)}",
"🃏Analyst": lambda x: f"/?q={quote(x)}-{quote(PromptPrefix)}",
"📚PyCoder": lambda x: f"/?q={quote(x)}-{quote(PromptPrefix2)}",
"🔬JSCoder": lambda x: f"/?q={quote(x)}-{quote(PromptPrefix3)}",
"📖": lambda x: f"https://en.wikipedia.org/wiki/{quote(x)}",
"🔍": lambda x: f"https://www.google.com/search?q={quote(x)}",
"🔎": lambda x: f"https://www.bing.com/search?q={quote(x)}",
"🎥": lambda x: f"https://www.youtube.com/results?search_query={quote(x)}",
"🐦": lambda x: f"https://twitter.com/search?q={quote(x)}",
}
links_md = ' '.join([f"[{emoji}]({url(k)})" for emoji, url in search_urls.items()])
st.markdown(f"**{k}** <small>{links_md}</small>", unsafe_allow_html=True)
def display_content_or_image(query):
"""
If 'query' is in transhuman_glossary or there's an image matching 'images/<query>.png',
show it. Otherwise warn.
"""
for category, term_list in transhuman_glossary.items():
for term in term_list:
if query.lower() in term.lower():
st.subheader(f"Found in {category}:")
st.write(term)
return True
image_path = f"images/{query}.png"
if os.path.exists(image_path):
st.image(image_path, caption=f"Image for {query}")
return True
st.warning("No matching content or image found.")
return False
def clear_query_params():
"""Warn about clearing. Full clearing requires a redirect or st.experimental_set_query_params()."""
st.warning("Define a redirect or link without query params if you want to truly clear them.")
########################################################################################
# 3) FILE-HANDLING (MD files, etc.)
########################################################################################
def load_file(file_path):
"""Load file contents as UTF-8 text, or return empty on error."""
try:
with open(file_path, "r", encoding='utf-8') as f:
return f.read()
except:
return ""
@st.cache_resource
def create_zip_of_files(files):
"""Combine multiple local .md files into a single .zip for user to download."""
zip_name = "Arxiv-Paper-Search-QA-RAG-Streamlit-Gradio-AP.zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for file in files:
zipf.write(file)
return zip_name
@st.cache_resource
def get_zip_download_link(zip_file):
"""Return an <a> link to download the given zip_file (base64-encoded)."""
with open(zip_file, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
return f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
def get_table_download_link(file_path):
"""
Creates a download link for a single file from your snippet.
Encodes it as base64 data.
"""
try:
with open(file_path, 'r', encoding='utf-8') as file:
data = file.read()
b64 = base64.b64encode(data.encode()).decode()
file_name = os.path.basename(file_path)
ext = os.path.splitext(file_name)[1]
mime_map = {
'.txt': 'text/plain',
'.py': 'text/plain',
'.xlsx': 'text/plain',
'.csv': 'text/plain',
'.htm': 'text/html',
'.md': 'text/markdown',
'.wav': 'audio/wav'
}
mime_type = mime_map.get(ext, 'application/octet-stream')
return f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
except:
return ''
def get_file_size(file_path):
"""Get file size in bytes."""
return os.path.getsize(file_path)
def FileSidebar():
"""
Renders .md files, providing open/view/delete/run logic in the sidebar.
"""
all_files = glob.glob("*.md")
# Exclude short-named or special files if needed:
all_files = [f for f in all_files if len(os.path.splitext(f)[0]) >= 5]
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True)
Files1, Files2 = st.sidebar.columns(2)
with Files1:
if st.button("🗑 Delete All"):
for file in all_files:
os.remove(file)
st.rerun()
with Files2:
if st.button("⬇️ Download"):
zip_file = create_zip_of_files(all_files)
st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
file_contents = ''
file_name = ''
next_action = ''
for file in all_files:
col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1])
with col1:
if st.button("🌐", key="md_"+file):
file_contents = load_file(file)
file_name = file
next_action = 'md'
st.session_state['next_action'] = next_action
with col2:
st.markdown(get_table_download_link(file), unsafe_allow_html=True)
with col3:
if st.button("📂", key="open_"+file):
file_contents = load_file(file)
file_name = file
next_action = 'open'
st.session_state['lastfilename'] = file
st.session_state['filename'] = file
st.session_state['filetext'] = file_contents
st.session_state['next_action'] = next_action
with col4:
if st.button("▶️", key="read_"+file):
file_contents = load_file(file)
file_name = file
next_action = 'search'
st.session_state['next_action'] = next_action
with col5:
if st.button("🗑", key="delete_"+file):
os.remove(file)
st.rerun()
if file_contents:
if next_action == 'open':
open1, open2 = st.columns([0.8, 0.2])
with open1:
file_name_input = st.text_input('File Name:', file_name, key='file_name_input')
file_content_area = st.text_area('File Contents:', file_contents, height=300, key='file_content_area')
if st.button('💾 Save File'):
with open(file_name_input, 'w', encoding='utf-8') as f:
f.write(file_content_area)
st.markdown(f'Saved {file_name_input} successfully.')
elif next_action == 'search':
file_content_area = st.text_area("File Contents:", file_contents, height=500)
user_prompt = PromptPrefix2 + file_contents
st.markdown(user_prompt)
if st.button('🔍Re-Code'):
search_arxiv(file_contents)
elif next_action == 'md':
st.markdown(file_contents)
SpeechSynthesis(file_contents)
if st.button("🔍Run"):
st.write("Running GPT logic placeholder...")
########################################################################################
# 4) SCORING / GLOSSARIES
########################################################################################
score_dir = "scores"
os.makedirs(score_dir, exist_ok=True)
def generate_key(label, header, idx):
return f"{header}_{label}_{idx}_key"
def update_score(key, increment=1):
"""
Track a 'score' for each glossary item or term, saved in JSON per key.
"""
score_file = os.path.join(score_dir, f"{key}.json")
if os.path.exists(score_file):
with open(score_file, "r") as file:
score_data = json.load(file)
else:
score_data = {"clicks": 0, "score": 0}
score_data["clicks"] += increment
score_data["score"] += increment
with open(score_file, "w") as file:
json.dump(score_data, file)
return score_data["score"]
def load_score(key):
file_path = os.path.join(score_dir, f"{key}.json")
if os.path.exists(file_path):
with open(file_path, "r") as file:
score_data = json.load(file)
return score_data["score"]
return 0
def display_buttons_with_scores(num_columns_text):
"""
Show glossary items as clickable buttons that increment a 'score'.
"""
game_emojis = {
"Dungeons and Dragons": "🐉",
"Call of Cthulhu": "🐙",
"GURPS": "🎲",
"Pathfinder": "🗺️",
"Kindred of the East": "🌅",
"Changeling": "🍃",
}
topic_emojis = {
"Core Rulebooks": "📚",
"Maps & Settings": "🗺️",
"Game Mechanics & Tools": "⚙️",
"Monsters & Adversaries": "👹",
"Campaigns & Adventures": "📜",
"Creatives & Assets": "🎨",
"Game Master Resources": "🛠️",
"Lore & Background": "📖",
"Character Development": "🧍",
"Homebrew Content": "🔧",
"General Topics": "🌍",
}
for category, games in roleplaying_glossary.items():
category_emoji = topic_emojis.get(category, "🔍")
st.markdown(f"## {category_emoji} {category}")
for game, terms in games.items():
game_emoji = game_emojis.get(game, "🎮")
for term in terms:
key = f"{category}_{game}_{term}".replace(' ', '_').lower()
score_val = load_score(key)
if st.button(f"{game_emoji} {category} {game} {term} {score_val}", key=key):
newscore = update_score(key.replace('?', ''))
st.markdown(f"Scored **{category} - {game} - {term}** -> {newscore}")
########################################################################################
# 5) IMAGES & VIDEOS
########################################################################################
def display_images_and_wikipedia_summaries(num_columns=4):
"""Display .png images in a grid, referencing the name as a 'keyword'."""
image_files = [f for f in os.listdir('.') if f.endswith('.png')]
if not image_files:
st.write("No PNG images found in the current directory.")
return
image_files_sorted = sorted(image_files, key=lambda x: len(x.split('.')[0]))
cols = st.columns(num_columns)
col_index = 0
for image_file in image_files_sorted:
with cols[col_index % num_columns]:
try:
image = Image.open(image_file)
st.image(image, use_column_width=True)
k = image_file.split('.')[0]
display_glossary_entity(k)
image_text_input = st.text_input(f"Prompt for {image_file}", key=f"image_prompt_{image_file}")
if image_text_input:
response = process_image(image_file, image_text_input)
st.markdown(response)
except:
st.write(f"Could not open {image_file}")
col_index += 1
def display_videos_and_links(num_columns=4):
"""Displays all .mp4/.webm in a grid, plus text input for prompts."""
video_files = [f for f in os.listdir('.') if f.endswith(('.mp4', '.webm'))]
if not video_files:
st.write("No MP4 or WEBM videos found in the current directory.")
return
video_files_sorted = sorted(video_files, key=lambda x: len(x.split('.')[0]))
cols = st.columns(num_columns)
col_index = 0
for video_file in video_files_sorted:
with cols[col_index % num_columns]:
k = video_file.split('.')[0]
st.video(video_file, format='video/mp4', start_time=0)
display_glossary_entity(k)
video_text_input = st.text_input(f"Video Prompt for {video_file}", key=f"video_prompt_{video_file}")
if video_text_input:
try:
seconds_per_frame = 10
process_video(video_file, seconds_per_frame)
except ValueError:
st.error("Invalid input for seconds per frame!")
col_index += 1
########################################################################################
# 6) MERMAID
########################################################################################
def generate_mermaid_html(mermaid_code: str) -> str:
"""
Returns HTML that centers the Mermaid diagram, loading from a CDN.
"""
return f"""
<html>
<head>
<script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script>
<style>
.centered-mermaid {{
display: flex;
justify-content: center;
margin: 20px auto;
}}
.mermaid {{
max-width: 800px;
}}
</style>
</head>
<body>
<div class="mermaid centered-mermaid">
{mermaid_code}
</div>
<script>
mermaid.initialize({{ startOnLoad: true }});
</script>
</body>
</html>
"""
def append_model_param(url: str, model_selected: bool) -> str:
"""
If user checks 'Append ?model=1', we append &model=1 or ?model=1 if not present.
"""
if not model_selected:
return url
delimiter = "&" if "?" in url else "?"
return f"{url}{delimiter}model=1"
def inject_base_url(url: str) -> str:
"""
If a link does not start with http, prepend your BASE_URL
so it becomes an absolute link to huggingface.co/spaces/...
"""
if url.startswith("http"):
return url
return f"{BASE_URL}{url}"
# We use 2-parameter click lines for Mermaid 11.4.1 compatibility:
DEFAULT_MERMAID = r"""
flowchart LR
U((User 😎)) -- "Talk 🗣️" --> LLM[LLM Agent 🤖\nExtract Info]
click U "?q=U" _self
click LLM "?q=LLM%20Agent%20Extract%20Info" _blank
LLM -- "Query 🔍" --> HS[Hybrid Search 🔎\nVector+NER+Lexical]
click HS "?q=Hybrid%20Search%20Vector%20NER%20Lexical" _blank
HS -- "Reason 🤔" --> RE[Reasoning Engine 🛠️\nNeuralNetwork+Medical]
click RE "?q=R" _blank
RE -- "Link 📡" --> KG((Knowledge Graph 📚\nOntology+GAR+RAG))
click KG "?q=K" _blank
"""
# New function to generate Mermaid diagram for each paper
def generate_mermaid_code(paper):
title = paper.split('|')[1].strip()
concepts = paper.split('\n')
mermaid_code = f"flowchart TD\n A[{title}]"
for concept in concepts[1:]: # Skip the title
if concept.strip():
mermaid_code += f" --> {concept.strip().replace('*', '').replace(',', '').replace(' ', '')}"
return mermaid_code
########################################################################################
# 7) MAIN UI
########################################################################################
def main():
st.set_page_config(page_title="Mermaid + Two-Parameter Click + LetterMap", layout="wide")
# Define a list of 10 slides (each with left and right pages), built from 40 paper entries.
slides = [
{
"left": """
### 07 Sep 2023 | [Structured Chain-of-Thought Prompting for Code Generation](https://arxiv.org/abs/2305.06599) | [⬇️](https://arxiv.org/pdf/2305.06599)
*Jia Li, Ge Li, Yongmin Li, Zhi Jin*
### 15 Nov 2023 | [Eliminating Reasoning via Inferring with Planning: A New Framework to Guide LLMs' Non-linear Thinking](https://arxiv.org/abs/2310.12342) | [⬇️](https://arxiv.org/pdf/2310.12342)
*Yongqi Tong, Yifan Wang, Dawei Li, Sizhe Wang, Zi Lin, Simeng Han, Jingbo Shang*
""",
"right": """
### 04 Jun 2023 | [Evaluating and Improving Tool-Augmented Computation-Intensive Math Reasoning](https://arxiv.org/abs/2306.02408) | [⬇️](https://arxiv.org/pdf/2306.02408)
*Beichen Zhang, Kun Zhou, Xilin Wei, Wayne Xin Zhao, Jing Sha, Shijin Wang, Ji-Rong Wen*
### 23 Oct 2023 | [Program of Thoughts Prompting: Disentangling Computation from Reasoning for Numerical Reasoning Tasks](https://arxiv.org/abs/2211.12588) | [⬇️](https://arxiv.org/pdf/2211.12588)
*Wenhu Chen, Xueguang Ma, Xinyi Wang, William W. Cohen*
"""
},
{
"left": """
### 04 Jan 2024 | [Text2MDT: Extracting Medical Decision Trees from Medical Texts](https://arxiv.org/abs/2401.02034) | [⬇️](https://arxiv.org/pdf/2401.02034)
*Wei Zhu, Wenfeng Li, Xing Tian, Pengfei Wang, Xiaoling Wang, Jin Chen, Yuanbin Wu, Yuan Ni, Guotong Xie*
### 21 Dec 2023 | [Automating Human Tutor-Style Programming Feedback: Leveraging GPT-4 Tutor Model for Hint Generation and GPT-3.5 Student Model for Hint Validation](https://arxiv.org/abs/2310.03780) | [⬇️](https://arxiv.org/pdf/2310.03780)
*Tung Phung, Victor-Alexandru Pădurean, Anjali Singh, Christopher Brooks, José Cambronero, Sumit Gulwani, Adish Singla, Gustavo Soares*
""",
"right": """
### 04 Feb 2024 | [STEVE-1: A Generative Model for Text-to-Behavior in Minecraft](https://arxiv.org/abs/2306.00937) | [⬇️](https://arxiv.org/pdf/2306.00937)
*Shalev Lifshitz, Keiran Paster, Harris Chan, Jimmy Ba, Sheila McIlraith*
### 20 May 2021 | [Data-Efficient Reinforcement Learning with Self-Predictive Representations](https://arxiv.org/abs/2007.05929) | [⬇️](https://arxiv.org/pdf/2007.05929)
*Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, Philip Bachman*
"""
},
{
"left": """
### 06 Jul 2022 | [Learning Invariant World State Representations with Predictive Coding](https://arxiv.org/abs/2207.02972) | [⬇️](https://arxiv.org/pdf/2207.02972)
*Avi Ziskind, Sujeong Kim, and Giedrius T. Burachas*
### 10 Nov 2023 | [State2Explanation: Concept-Based Explanations to Benefit Agent Learning and User Understanding](https://arxiv.org/abs/2309.12482) | [⬇️](https://arxiv.org/pdf/2309.12482)
*Devleena Das, Sonia Chernova, Been Kim*
""",
"right": """
### 17 May 2023 | [LeTI: Learning to Generate from Textual Interactions](https://arxiv.org/abs/2305.10314) | [⬇️](https://arxiv.org/pdf/2305.10314)
*Xingyao Wang, Hao Peng, Reyhaneh Jabbarvand, Heng Ji*
### 01 Dec 2022 | [A General Purpose Supervisory Signal for Embodied Agents](https://arxiv.org/abs/2212.01186) | [⬇️](https://arxiv.org/pdf/2212.01186)
*Kunal Pratap Singh, Jordi Salvador, Luca Weihs, Aniruddha Kembhavi*
"""
},
{
"left": """
### 16 May 2023 | [RAMario: Experimental Approach to Reptile Algorithm -- Reinforcement Learning for Mario](https://arxiv.org/abs/2305.09655) | [⬇️](https://arxiv.org/pdf/2305.09655)
*Sanyam Jain*
### 31 Mar 2023 | [Pair Programming with Large Language Models for Sampling and Estimation of Copulas](https://arxiv.org/abs/2303.18116) | [⬇️](https://arxiv.org/pdf/2303.18116)
*Jan Górecki*
""",
"right": """
### 28 Jun 2023 | [AssistGPT: A General Multi-modal Assistant that can Plan, Execute, Inspect, and Learn](https://arxiv.org/abs/2306.08640) | [⬇️](https://arxiv.org/pdf/2306.08640)
*Difei Gao, Lei Ji, Luowei Zhou, Kevin Qinghong Lin, Joya Chen, Zihan Fan, Mike Zheng Shou*
### 07 Nov 2023 | [Selective Visual Representations Improve Convergence and Generalization for Embodied AI](https://arxiv.org/abs/2311.04193) | [⬇️](https://arxiv.org/pdf/2311.04193)
*Ainaz Eftekhar, Kuo-Hao Zeng, Jiafei Duan, Ali Farhadi, Ani Kembhavi, Ranjay Krishna*
"""
},
{
"left": """
### 16 Feb 2023 | [Foundation Models for Natural Language Processing -- Pre-trained Language Models Integrating Media](https://arxiv.org/abs/2302.08575) | [⬇️](https://arxiv.org/pdf/2302.08575)
*Gerhard Paaß and Sven Giesselbach*
### 21 Dec 2023 | [Automating Human Tutor-Style Programming Feedback: Leveraging GPT-4 Tutor Model for Hint Generation and GPT-3.5 Student Model for Hint Validation](https://arxiv.org/abs/2310.03780) | [⬇️](https://arxiv.org/pdf/2310.03780)
*Tung Phung, Victor-Alexandru Pădurean, Anjali Singh, Christopher Brooks, José Cambronero, Sumit Gulwani, Adish Singla, Gustavo Soares*
""",
"right": """
### 04 Feb 2024 | [STEVE-1: A Generative Model for Text-to-Behavior in Minecraft](https://arxiv.org/abs/2306.00937) | [⬇️](https://arxiv.org/pdf/2306.00937)
*Shalev Lifshitz, Keiran Paster, Harris Chan, Jimmy Ba, Sheila McIlraith*
### 20 May 2021 | [Data-Efficient Reinforcement Learning with Self-Predictive Representations](https://arxiv.org/abs/2007.05929) | [⬇️](https://arxiv.org/pdf/2007.05929)
*Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, Philip Bachman*
"""
},
{
"left": """
### 06 Jul 2022 | [Learning Invariant World State Representations with Predictive Coding](https://arxiv.org/abs/2207.02972) | [⬇️](https://arxiv.org/pdf/2207.02972)
*Avi Ziskind, Sujeong Kim, and Giedrius T. Burachas*
### 10 Nov 2023 | [State2Explanation: Concept-Based Explanations to Benefit Agent Learning and User Understanding](https://arxiv.org/abs/2309.12482) | [⬇️](https://arxiv.org/pdf/2309.12482)
*Devleena Das, Sonia Chernova, Been Kim*
""",
"right": """
### 17 May 2023 | [LeTI: Learning to Generate from Textual Interactions](https://arxiv.org/abs/2305.10314) | [⬇️](https://arxiv.org/pdf/2305.10314)
*Xingyao Wang, Hao Peng, Reyhaneh Jabbarvand, Heng Ji*
### 01 Dec 2022 | [A General Purpose Supervisory Signal for Embodied Agents](https://arxiv.org/abs/2212.01186) | [⬇️](https://arxiv.org/pdf/2212.01186)
*Kunal Pratap Singh, Jordi Salvador, Luca Weihs, Aniruddha Kembhavi*
"""
},
{
"left": """
### 16 May 2023 | [RAMario: Experimental Approach to Reptile Algorithm -- Reinforcement Learning for Mario](https://arxiv.org/abs/2305.09655) | [⬇️](https://arxiv.org/pdf/2305.09655)
*Sanyam Jain*
### 31 Mar 2023 | [Pair Programming with Large Language Models for Sampling and Estimation of Copulas](https://arxiv.org/abs/2303.18116) | [⬇️](https://arxiv.org/pdf/2303.18116)
*Jan Górecki*
""",
"right": """
### 28 Jun 2023 | [AssistGPT: A General Multi-modal Assistant that can Plan, Execute, Inspect, and Learn](https://arxiv.org/abs/2306.08640) | [⬇️](https://arxiv.org/pdf/2306.08640)
*Difei Gao, Lei Ji, Luowei Zhou, Kevin Qinghong Lin, Joya Chen, Zihan Fan, Mike Zheng Shou*
### 07 Nov 2023 | [Selective Visual Representations Improve Convergence and Generalization for Embodied AI](https://arxiv.org/abs/2311.04193) | [⬇️](https://arxiv.org/pdf/2311.04193)
*Ainaz Eftekhar, Kuo-Hao Zeng, Jiafei Duan, Ali Farhadi, Ani Kembhavi, Ranjay Krishna*
"""
},
{
"left": """
### 16 Feb 2023 | [Foundation Models for Natural Language Processing -- Pre-trained Language Models Integrating Media](https://arxiv.org/abs/2302.08575) | [⬇️](https://arxiv.org/pdf/2302.08575)
*Gerhard Paaß and Sven Giesselbach*
### 21 Dec 2023 | [Automating Human Tutor-Style Programming Feedback: Leveraging GPT-4 Tutor Model for Hint Generation and GPT-3.5 Student Model for Hint Validation](https://arxiv.org/abs/2310.03780) | [⬇️](https://arxiv.org/pdf/2310.03780)
*Tung Phung, Victor-Alexandru Pădurean, Anjali Singh, Christopher Brooks, José Cambronero, Sumit Gulwani, Adish Singla, Gustavo Soares*
""",
"right": """
### 04 Feb 2024 | [STEVE-1: A Generative Model for Text-to-Behavior in Minecraft](https://arxiv.org/abs/2306.00937) | [⬇️](https://arxiv.org/pdf/2306.00937)
*Shalev Lifshitz, Keiran Paster, Harris Chan, Jimmy Ba, Sheila McIlraith*
### 20 May 2021 | [Data-Efficient Reinforcement Learning with Self-Predictive Representations](https://arxiv.org/abs/2007.05929) | [⬇️](https://arxiv.org/pdf/2007.05929)
*Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, Philip Bachman*
"""
}
]
# Initialize slide index in session state if not already set
if "slide_idx" not in st.session_state:
st.session_state.slide_idx = 0
num_slides = len(slides)
current_slide = slides[st.session_state.slide_idx]
# Display slide header (e.g., "Slide 1 of 10")
st.markdown(f"## Slide {st.session_state.slide_idx + 1} of {num_slides}")
# Display left and right pages side by side
col_left, col_right = st.columns(2)
with col_left:
st.markdown("### Left Page")
for paper in current_slide["left"].split('\n\n'):
if paper.strip():
st.markdown(paper, unsafe_allow_html=True)
mermaid_diagram = generate_mermaid_code(paper)
st.markdown(f"```mermaid\n{mermaid_diagram}\n```", unsafe_allow_html=True)
with col_right:
st.markdown("### Right Page")
for paper in current_slide["right"].split('\n\n'):
if paper.strip():
st.markdown(paper, unsafe_allow_html=True)
mermaid_diagram = generate_mermaid_code(paper)
st.markdown(f"```mermaid\n{mermaid_diagram}\n```", unsafe_allow_html=True)
# Countdown timer (15 seconds) for auto-advancement
for remaining in range(15, 0, -1):
st.markdown(f"**Advancing in {remaining} seconds...**")
time.sleep(1)
# Advance to the next slide (wrap around at the end)
st.session_state.slide_idx = (st.session_state.slide_idx + 1) % num_slides
# Rerun the app to display the next slide
st.rerun()
if __name__ == "__main__":
main()
|