File size: 28,592 Bytes
f03b3f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
#!/usr/bin/env python3

import os
import re
import glob
import json
import base64
import zipfile
import random
import requests
import streamlit as st
import streamlit.components.v1 as components
import time

# If you do model inference via huggingface_hub:
# from huggingface_hub import InferenceClient

########################################################################################
# 1) GLOBAL CONFIG & PLACEHOLDERS
########################################################################################
BASE_URL = "https://huggingface.co/spaces/awacke1/MermaidMarkdownDiagramEditor"
BASE_URL = ""

PromptPrefix = "AI-Search: "
PromptPrefix2 = "AI-Refine: "
PromptPrefix3 = "AI-JS: "

roleplaying_glossary = {
    "Core Rulebooks": {
        "Dungeons and Dragons": ["Player's Handbook", "Dungeon Master's Guide", "Monster Manual"],
        "GURPS": ["Basic Set Characters", "Basic Set Campaigns"]
    },
    "Campaigns & Adventures": {
        "Pathfinder": ["Rise of the Runelords", "Curse of the Crimson Throne"]
    }
}

transhuman_glossary = {
    "Neural Interfaces": ["Cortex Jack", "Mind-Machine Fusion"],
    "Cybernetics": ["Robotic Limbs", "Augmented Eyes"],
}

def process_text(text):
    """🕵️ process_text: detective style—prints lines to Streamlit for debugging."""
    st.write(f"process_text called with: {text}")

def search_arxiv(text):
    """🔭 search_arxiv: pretend to search ArXiv, just prints debug."""
    st.write(f"search_arxiv called with: {text}")

def SpeechSynthesis(text):
    """🗣 Simple logging for text-to-speech placeholders."""
    st.write(f"SpeechSynthesis called with: {text}")

def process_image(image_file, prompt):
    """📷 Simple placeholder for image AI pipeline."""
    return f"[process_image placeholder] {image_file} => {prompt}"

def process_video(video_file, seconds_per_frame):
    """🎞 Simple placeholder for video AI pipeline."""
    st.write(f"[process_video placeholder] {video_file}, {seconds_per_frame} sec/frame")

API_URL = "https://huggingface-inference-endpoint-placeholder"
API_KEY = "hf_XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"

@st.cache_resource
def InferenceLLM(prompt):
    """🔮 Stub returning mock response for 'prompt'."""
    return f"[InferenceLLM placeholder response to prompt: {prompt}]"

########################################################################################
# 2) GLOSSARY & FILE UTILITY
########################################################################################
@st.cache_resource
def display_glossary_entity(k):
    """
    Creates multiple link emojis for a single entity.
    Each link might point to /?q=..., /?q=<prefix>..., or external sites.
    """
    search_urls = {
        "🚀🌌ArXiv":   lambda x: f"/?q={quote(x)}",
        "🃏Analyst":  lambda x: f"/?q={quote(x)}-{quote(PromptPrefix)}",
        "📚PyCoder":  lambda x: f"/?q={quote(x)}-{quote(PromptPrefix2)}",
        "🔬JSCoder":  lambda x: f"/?q={quote(x)}-{quote(PromptPrefix3)}",
        "📖":         lambda x: f"https://en.wikipedia.org/wiki/{quote(x)}",
        "🔍":         lambda x: f"https://www.google.com/search?q={quote(x)}",
        "🔎":         lambda x: f"https://www.bing.com/search?q={quote(x)}",
        "🎥":         lambda x: f"https://www.youtube.com/results?search_query={quote(x)}",
        "🐦":         lambda x: f"https://twitter.com/search?q={quote(x)}",
    }
    links_md = ' '.join([f"[{emoji}]({url(k)})" for emoji, url in search_urls.items()])
    st.markdown(f"**{k}** <small>{links_md}</small>", unsafe_allow_html=True)

def display_content_or_image(query):
    """
    If 'query' is in transhuman_glossary or there's an image matching 'images/<query>.png',
    show it. Otherwise warn.
    """
    for category, term_list in transhuman_glossary.items():
        for term in term_list:
            if query.lower() in term.lower():
                st.subheader(f"Found in {category}:")
                st.write(term)
                return True
    image_path = f"images/{query}.png"
    if os.path.exists(image_path):
        st.image(image_path, caption=f"Image for {query}")
        return True
    st.warning("No matching content or image found.")
    return False

def clear_query_params():
    """Warn about clearing. Full clearing requires a redirect or st.experimental_set_query_params()."""
    st.warning("Define a redirect or link without query params if you want to truly clear them.")

########################################################################################
# 3) FILE-HANDLING (MD files, etc.)
########################################################################################
def load_file(file_path):
    """Load file contents as UTF-8 text, or return empty on error."""
    try:
        with open(file_path, "r", encoding='utf-8') as f:
            return f.read()
    except:
        return ""

@st.cache_resource
def create_zip_of_files(files):
    """Combine multiple local .md files into a single .zip for user to download."""
    zip_name = "Arxiv-Paper-Search-QA-RAG-Streamlit-Gradio-AP.zip"
    with zipfile.ZipFile(zip_name, 'w') as zipf:
        for file in files:
            zipf.write(file)
    return zip_name

@st.cache_resource
def get_zip_download_link(zip_file):
    """Return an <a> link to download the given zip_file (base64-encoded)."""
    with open(zip_file, 'rb') as f:
        data = f.read()
    b64 = base64.b64encode(data).decode()
    return f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'

def get_table_download_link(file_path):
    """
    Creates a download link for a single file from your snippet.
    Encodes it as base64 data.
    """
    try:
        with open(file_path, 'r', encoding='utf-8') as file:
            data = file.read()
        b64 = base64.b64encode(data.encode()).decode()
        file_name = os.path.basename(file_path)
        ext = os.path.splitext(file_name)[1]
        mime_map = {
            '.txt':  'text/plain',
            '.py':   'text/plain',
            '.xlsx': 'text/plain',
            '.csv':  'text/plain',
            '.htm':  'text/html',
            '.md':   'text/markdown',
            '.wav':  'audio/wav'
        }
        mime_type = mime_map.get(ext, 'application/octet-stream')
        return f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
    except:
        return ''

def get_file_size(file_path):
    """Get file size in bytes."""
    return os.path.getsize(file_path)

def FileSidebar():
    """
    Renders .md files, providing open/view/delete/run logic in the sidebar.
    """
    all_files = glob.glob("*.md")
    # Exclude short-named or special files if needed:
    all_files = [f for f in all_files if len(os.path.splitext(f)[0]) >= 5]
    all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True)

    Files1, Files2 = st.sidebar.columns(2)
    with Files1:
        if st.button("🗑 Delete All"):
            for file in all_files:
                os.remove(file)
            st.rerun()
    with Files2:
        if st.button("⬇️ Download"):
            zip_file = create_zip_of_files(all_files)
            st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)

    file_contents = ''
    file_name = ''
    next_action = ''

    for file in all_files:
        col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1])
        with col1:
            if st.button("🌐", key="md_"+file):
                file_contents = load_file(file)
                file_name = file
                next_action = 'md'
                st.session_state['next_action'] = next_action
        with col2:
            st.markdown(get_table_download_link(file), unsafe_allow_html=True)
        with col3:
            if st.button("📂", key="open_"+file):
                file_contents = load_file(file)
                file_name = file
                next_action = 'open'
                st.session_state['lastfilename'] = file
                st.session_state['filename'] = file
                st.session_state['filetext'] = file_contents
                st.session_state['next_action'] = next_action
        with col4:
            if st.button("▶️", key="read_"+file):
                file_contents = load_file(file)
                file_name = file
                next_action = 'search'
                st.session_state['next_action'] = next_action
        with col5:
            if st.button("🗑", key="delete_"+file):
                os.remove(file)
                st.rerun()

    if file_contents:
        if next_action == 'open':
            open1, open2 = st.columns([0.8, 0.2])
            with open1:
                file_name_input = st.text_input('File Name:', file_name, key='file_name_input')
                file_content_area = st.text_area('File Contents:', file_contents, height=300, key='file_content_area')
                if st.button('💾 Save File'):
                    with open(file_name_input, 'w', encoding='utf-8') as f:
                        f.write(file_content_area)
                    st.markdown(f'Saved {file_name_input} successfully.')
        elif next_action == 'search':
            file_content_area = st.text_area("File Contents:", file_contents, height=500)
            user_prompt = PromptPrefix2 + file_contents
            st.markdown(user_prompt)
            if st.button('🔍Re-Code'):
                search_arxiv(file_contents)
        elif next_action == 'md':
            st.markdown(file_contents)
            SpeechSynthesis(file_contents)
            if st.button("🔍Run"):
                st.write("Running GPT logic placeholder...")

########################################################################################
# 4) SCORING / GLOSSARIES
########################################################################################
score_dir = "scores"
os.makedirs(score_dir, exist_ok=True)

def generate_key(label, header, idx):
    return f"{header}_{label}_{idx}_key"

def update_score(key, increment=1):
    """
    Track a 'score' for each glossary item or term, saved in JSON per key.
    """
    score_file = os.path.join(score_dir, f"{key}.json")
    if os.path.exists(score_file):
        with open(score_file, "r") as file:
            score_data = json.load(file)
    else:
        score_data = {"clicks": 0, "score": 0}
    score_data["clicks"] += increment
    score_data["score"] += increment
    with open(score_file, "w") as file:
        json.dump(score_data, file)
    return score_data["score"]

def load_score(key):
    file_path = os.path.join(score_dir, f"{key}.json")
    if os.path.exists(file_path):
        with open(file_path, "r") as file:
            score_data = json.load(file)
        return score_data["score"]
    return 0

def display_buttons_with_scores(num_columns_text):
    """
    Show glossary items as clickable buttons that increment a 'score'.
    """
    game_emojis = {
        "Dungeons and Dragons": "🐉",
        "Call of Cthulhu": "🐙",
        "GURPS": "🎲",
        "Pathfinder": "🗺️",
        "Kindred of the East": "🌅",
        "Changeling": "🍃",
    }
    topic_emojis = {
        "Core Rulebooks":          "📚",
        "Maps & Settings":         "🗺️",
        "Game Mechanics & Tools":  "⚙️",
        "Monsters & Adversaries":  "👹",
        "Campaigns & Adventures":  "📜",
        "Creatives & Assets":      "🎨",
        "Game Master Resources":   "🛠️",
        "Lore & Background":       "📖",
        "Character Development":   "🧍",
        "Homebrew Content":        "🔧",
        "General Topics":          "🌍",
    }

    for category, games in roleplaying_glossary.items():
        category_emoji = topic_emojis.get(category, "🔍")
        st.markdown(f"## {category_emoji} {category}")
        for game, terms in games.items():
            game_emoji = game_emojis.get(game, "🎮")
            for term in terms:
                key = f"{category}_{game}_{term}".replace(' ', '_').lower()
                score_val = load_score(key)
                if st.button(f"{game_emoji} {category} {game} {term} {score_val}", key=key):
                    newscore = update_score(key.replace('?', ''))
                    st.markdown(f"Scored **{category} - {game} - {term}** -> {newscore}")

########################################################################################
# 5) IMAGES & VIDEOS
########################################################################################

def display_images_and_wikipedia_summaries(num_columns=4):
    """Display .png images in a grid, referencing the name as a 'keyword'."""
    image_files = [f for f in os.listdir('.') if f.endswith('.png')]
    if not image_files:
        st.write("No PNG images found in the current directory.")
        return

    image_files_sorted = sorted(image_files, key=lambda x: len(x.split('.')[0]))
    cols = st.columns(num_columns)
    col_index = 0
    for image_file in image_files_sorted:
        with cols[col_index % num_columns]:
            try:
                image = Image.open(image_file)
                st.image(image, use_column_width=True)
                k = image_file.split('.')[0]
                display_glossary_entity(k)
                image_text_input = st.text_input(f"Prompt for {image_file}", key=f"image_prompt_{image_file}")
                if image_text_input:
                    response = process_image(image_file, image_text_input)
                    st.markdown(response)
            except:
                st.write(f"Could not open {image_file}")
        col_index += 1

def display_videos_and_links(num_columns=4):
    """Displays all .mp4/.webm in a grid, plus text input for prompts."""
    video_files = [f for f in os.listdir('.') if f.endswith(('.mp4', '.webm'))]
    if not video_files:
        st.write("No MP4 or WEBM videos found in the current directory.")
        return

    video_files_sorted = sorted(video_files, key=lambda x: len(x.split('.')[0]))
    cols = st.columns(num_columns)
    col_index = 0
    for video_file in video_files_sorted:
        with cols[col_index % num_columns]:
            k = video_file.split('.')[0]
            st.video(video_file, format='video/mp4', start_time=0)
            display_glossary_entity(k)
            video_text_input = st.text_input(f"Video Prompt for {video_file}", key=f"video_prompt_{video_file}")
            if video_text_input:
                try:
                    seconds_per_frame = 10
                    process_video(video_file, seconds_per_frame)
                except ValueError:
                    st.error("Invalid input for seconds per frame!")
        col_index += 1

########################################################################################
# 6) MERMAID
########################################################################################

def generate_mermaid_html(mermaid_code: str) -> str:
    """
    Returns HTML that centers the Mermaid diagram, loading from a CDN.
    """
    return f"""
    <html>
    <head>
        <script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script>
        <style>
            .centered-mermaid {{
                display: flex;
                justify-content: center;
                margin: 20px auto;
            }}
            .mermaid {{
                max-width: 800px;
            }}
        </style>
    </head>
    <body>
        <div class="mermaid centered-mermaid">
            {mermaid_code}
        </div>
        <script>
            mermaid.initialize({{ startOnLoad: true }});
        </script>
    </body>
    </html>
    """

def append_model_param(url: str, model_selected: bool) -> str:
    """
    If user checks 'Append ?model=1', we append &model=1 or ?model=1 if not present.
    """
    if not model_selected:
        return url
    delimiter = "&" if "?" in url else "?"
    return f"{url}{delimiter}model=1"

def inject_base_url(url: str) -> str:
    """
    If a link does not start with http, prepend your BASE_URL
    so it becomes an absolute link to huggingface.co/spaces/...
    """
    if url.startswith("http"):
        return url
    return f"{BASE_URL}{url}"

# We use 2-parameter click lines for Mermaid 11.4.1 compatibility:
DEFAULT_MERMAID = r"""
flowchart LR
    U((User 😎)) -- "Talk 🗣️" --> LLM[LLM Agent 🤖\nExtract Info]
    click U "?q=U" _self
    click LLM "?q=LLM%20Agent%20Extract%20Info" _blank

    LLM -- "Query 🔍" --> HS[Hybrid Search 🔎\nVector+NER+Lexical]
    click HS "?q=Hybrid%20Search%20Vector%20NER%20Lexical" _blank

    HS -- "Reason 🤔" --> RE[Reasoning Engine 🛠️\nNeuralNetwork+Medical]
    click RE "?q=R" _blank

    RE -- "Link 📡" --> KG((Knowledge Graph 📚\nOntology+GAR+RAG))
    click KG "?q=K" _blank
"""

# New function to generate Mermaid diagram for each paper
def generate_mermaid_code(paper):
    title = paper.split('|')[1].strip()
    concepts = paper.split('\n')
    mermaid_code = f"flowchart TD\n    A[{title}]"
    for concept in concepts[1:]:  # Skip the title
        if concept.strip():
            mermaid_code += f" --> {concept.strip().replace('*', '').replace(',', '').replace(' ', '')}"
    return mermaid_code

########################################################################################
# 7) MAIN UI
########################################################################################

def main():
    st.set_page_config(page_title="Mermaid + Two-Parameter Click + LetterMap", layout="wide")
    
        # Define a list of 10 slides (each with left and right pages), built from 40 paper entries.
    slides = [
        {
            "left": """
    ### 07 Sep 2023 | [Structured Chain-of-Thought Prompting for Code Generation](https://arxiv.org/abs/2305.06599) | [⬇️](https://arxiv.org/pdf/2305.06599)
    *Jia Li, Ge Li, Yongmin Li, Zhi Jin*
    
    ### 15 Nov 2023 | [Eliminating Reasoning via Inferring with Planning: A New Framework to Guide LLMs' Non-linear Thinking](https://arxiv.org/abs/2310.12342) | [⬇️](https://arxiv.org/pdf/2310.12342)
    *Yongqi Tong, Yifan Wang, Dawei Li, Sizhe Wang, Zi Lin, Simeng Han, Jingbo Shang*
            """,
            "right": """
    ### 04 Jun 2023 | [Evaluating and Improving Tool-Augmented Computation-Intensive Math Reasoning](https://arxiv.org/abs/2306.02408) | [⬇️](https://arxiv.org/pdf/2306.02408)
    *Beichen Zhang, Kun Zhou, Xilin Wei, Wayne Xin Zhao, Jing Sha, Shijin Wang, Ji-Rong Wen*
    
    ### 23 Oct 2023 | [Program of Thoughts Prompting: Disentangling Computation from Reasoning for Numerical Reasoning Tasks](https://arxiv.org/abs/2211.12588) | [⬇️](https://arxiv.org/pdf/2211.12588)
    *Wenhu Chen, Xueguang Ma, Xinyi Wang, William W. Cohen*
            """
        },
        {
            "left": """
    ### 04 Jan 2024 | [Text2MDT: Extracting Medical Decision Trees from Medical Texts](https://arxiv.org/abs/2401.02034) | [⬇️](https://arxiv.org/pdf/2401.02034)
    *Wei Zhu, Wenfeng Li, Xing Tian, Pengfei Wang, Xiaoling Wang, Jin Chen, Yuanbin Wu, Yuan Ni, Guotong Xie*
    
    ### 21 Dec 2023 | [Automating Human Tutor-Style Programming Feedback: Leveraging GPT-4 Tutor Model for Hint Generation and GPT-3.5 Student Model for Hint Validation](https://arxiv.org/abs/2310.03780) | [⬇️](https://arxiv.org/pdf/2310.03780)
    *Tung Phung, Victor-Alexandru Pădurean, Anjali Singh, Christopher Brooks, José Cambronero, Sumit Gulwani, Adish Singla, Gustavo Soares*
            """,
            "right": """
    ### 04 Feb 2024 | [STEVE-1: A Generative Model for Text-to-Behavior in Minecraft](https://arxiv.org/abs/2306.00937) | [⬇️](https://arxiv.org/pdf/2306.00937)
    *Shalev Lifshitz, Keiran Paster, Harris Chan, Jimmy Ba, Sheila McIlraith*
    
    ### 20 May 2021 | [Data-Efficient Reinforcement Learning with Self-Predictive Representations](https://arxiv.org/abs/2007.05929) | [⬇️](https://arxiv.org/pdf/2007.05929)
    *Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, Philip Bachman*
            """
        },
        {
            "left": """
    ### 06 Jul 2022 | [Learning Invariant World State Representations with Predictive Coding](https://arxiv.org/abs/2207.02972) | [⬇️](https://arxiv.org/pdf/2207.02972)
    *Avi Ziskind, Sujeong Kim, and Giedrius T. Burachas*
    
    ### 10 Nov 2023 | [State2Explanation: Concept-Based Explanations to Benefit Agent Learning and User Understanding](https://arxiv.org/abs/2309.12482) | [⬇️](https://arxiv.org/pdf/2309.12482)
    *Devleena Das, Sonia Chernova, Been Kim*
            """,
            "right": """
    ### 17 May 2023 | [LeTI: Learning to Generate from Textual Interactions](https://arxiv.org/abs/2305.10314) | [⬇️](https://arxiv.org/pdf/2305.10314)
    *Xingyao Wang, Hao Peng, Reyhaneh Jabbarvand, Heng Ji*
    
    ### 01 Dec 2022 | [A General Purpose Supervisory Signal for Embodied Agents](https://arxiv.org/abs/2212.01186) | [⬇️](https://arxiv.org/pdf/2212.01186)
    *Kunal Pratap Singh, Jordi Salvador, Luca Weihs, Aniruddha Kembhavi*
            """
        },
        {
            "left": """
    ### 16 May 2023 | [RAMario: Experimental Approach to Reptile Algorithm -- Reinforcement Learning for Mario](https://arxiv.org/abs/2305.09655) | [⬇️](https://arxiv.org/pdf/2305.09655)
    *Sanyam Jain*
    
    ### 31 Mar 2023 | [Pair Programming with Large Language Models for Sampling and Estimation of Copulas](https://arxiv.org/abs/2303.18116) | [⬇️](https://arxiv.org/pdf/2303.18116)
    *Jan Górecki*
            """,
            "right": """
    ### 28 Jun 2023 | [AssistGPT: A General Multi-modal Assistant that can Plan, Execute, Inspect, and Learn](https://arxiv.org/abs/2306.08640) | [⬇️](https://arxiv.org/pdf/2306.08640)
    *Difei Gao, Lei Ji, Luowei Zhou, Kevin Qinghong Lin, Joya Chen, Zihan Fan, Mike Zheng Shou*
    
    ### 07 Nov 2023 | [Selective Visual Representations Improve Convergence and Generalization for Embodied AI](https://arxiv.org/abs/2311.04193) | [⬇️](https://arxiv.org/pdf/2311.04193)
    *Ainaz Eftekhar, Kuo-Hao Zeng, Jiafei Duan, Ali Farhadi, Ani Kembhavi, Ranjay Krishna*
            """
        },
        {
            "left": """
    ### 16 Feb 2023 | [Foundation Models for Natural Language Processing -- Pre-trained Language Models Integrating Media](https://arxiv.org/abs/2302.08575) | [⬇️](https://arxiv.org/pdf/2302.08575)
    *Gerhard Paaß and Sven Giesselbach*
    
    ### 21 Dec 2023 | [Automating Human Tutor-Style Programming Feedback: Leveraging GPT-4 Tutor Model for Hint Generation and GPT-3.5 Student Model for Hint Validation](https://arxiv.org/abs/2310.03780) | [⬇️](https://arxiv.org/pdf/2310.03780)
    *Tung Phung, Victor-Alexandru Pădurean, Anjali Singh, Christopher Brooks, José Cambronero, Sumit Gulwani, Adish Singla, Gustavo Soares*
            """,
            "right": """
    ### 04 Feb 2024 | [STEVE-1: A Generative Model for Text-to-Behavior in Minecraft](https://arxiv.org/abs/2306.00937) | [⬇️](https://arxiv.org/pdf/2306.00937)
    *Shalev Lifshitz, Keiran Paster, Harris Chan, Jimmy Ba, Sheila McIlraith*
    
    ### 20 May 2021 | [Data-Efficient Reinforcement Learning with Self-Predictive Representations](https://arxiv.org/abs/2007.05929) | [⬇️](https://arxiv.org/pdf/2007.05929)
    *Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, Philip Bachman*
            """
        },
        {
            "left": """
    ### 06 Jul 2022 | [Learning Invariant World State Representations with Predictive Coding](https://arxiv.org/abs/2207.02972) | [⬇️](https://arxiv.org/pdf/2207.02972)
    *Avi Ziskind, Sujeong Kim, and Giedrius T. Burachas*
    
    ### 10 Nov 2023 | [State2Explanation: Concept-Based Explanations to Benefit Agent Learning and User Understanding](https://arxiv.org/abs/2309.12482) | [⬇️](https://arxiv.org/pdf/2309.12482)
    *Devleena Das, Sonia Chernova, Been Kim*
            """,
            "right": """
    ### 17 May 2023 | [LeTI: Learning to Generate from Textual Interactions](https://arxiv.org/abs/2305.10314) | [⬇️](https://arxiv.org/pdf/2305.10314)
    *Xingyao Wang, Hao Peng, Reyhaneh Jabbarvand, Heng Ji*
    
    ### 01 Dec 2022 | [A General Purpose Supervisory Signal for Embodied Agents](https://arxiv.org/abs/2212.01186) | [⬇️](https://arxiv.org/pdf/2212.01186)
    *Kunal Pratap Singh, Jordi Salvador, Luca Weihs, Aniruddha Kembhavi*
            """
        },
        {
            "left": """
    ### 16 May 2023 | [RAMario: Experimental Approach to Reptile Algorithm -- Reinforcement Learning for Mario](https://arxiv.org/abs/2305.09655) | [⬇️](https://arxiv.org/pdf/2305.09655)
    *Sanyam Jain*
    
    ### 31 Mar 2023 | [Pair Programming with Large Language Models for Sampling and Estimation of Copulas](https://arxiv.org/abs/2303.18116) | [⬇️](https://arxiv.org/pdf/2303.18116)
    *Jan Górecki*
            """,
            "right": """
    ### 28 Jun 2023 | [AssistGPT: A General Multi-modal Assistant that can Plan, Execute, Inspect, and Learn](https://arxiv.org/abs/2306.08640) | [⬇️](https://arxiv.org/pdf/2306.08640)
    *Difei Gao, Lei Ji, Luowei Zhou, Kevin Qinghong Lin, Joya Chen, Zihan Fan, Mike Zheng Shou*
    
    ### 07 Nov 2023 | [Selective Visual Representations Improve Convergence and Generalization for Embodied AI](https://arxiv.org/abs/2311.04193) | [⬇️](https://arxiv.org/pdf/2311.04193)
    *Ainaz Eftekhar, Kuo-Hao Zeng, Jiafei Duan, Ali Farhadi, Ani Kembhavi, Ranjay Krishna*
            """
        },
        {
            "left": """
    ### 16 Feb 2023 | [Foundation Models for Natural Language Processing -- Pre-trained Language Models Integrating Media](https://arxiv.org/abs/2302.08575) | [⬇️](https://arxiv.org/pdf/2302.08575)
    *Gerhard Paaß and Sven Giesselbach*
    
    ### 21 Dec 2023 | [Automating Human Tutor-Style Programming Feedback: Leveraging GPT-4 Tutor Model for Hint Generation and GPT-3.5 Student Model for Hint Validation](https://arxiv.org/abs/2310.03780) | [⬇️](https://arxiv.org/pdf/2310.03780)
    *Tung Phung, Victor-Alexandru Pădurean, Anjali Singh, Christopher Brooks, José Cambronero, Sumit Gulwani, Adish Singla, Gustavo Soares*
            """,
            "right": """
    ### 04 Feb 2024 | [STEVE-1: A Generative Model for Text-to-Behavior in Minecraft](https://arxiv.org/abs/2306.00937) | [⬇️](https://arxiv.org/pdf/2306.00937)
    *Shalev Lifshitz, Keiran Paster, Harris Chan, Jimmy Ba, Sheila McIlraith*
    
    ### 20 May 2021 | [Data-Efficient Reinforcement Learning with Self-Predictive Representations](https://arxiv.org/abs/2007.05929) | [⬇️](https://arxiv.org/pdf/2007.05929)
    *Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, Philip Bachman*
            """
        }
    ]
    
    
    
    

    # Initialize slide index in session state if not already set
    if "slide_idx" not in st.session_state:
        st.session_state.slide_idx = 0

    num_slides = len(slides)
    current_slide = slides[st.session_state.slide_idx]

    # Display slide header (e.g., "Slide 1 of 10")
    st.markdown(f"## Slide {st.session_state.slide_idx + 1} of {num_slides}")

    # Display left and right pages side by side
    col_left, col_right = st.columns(2)
    with col_left:
        st.markdown("### Left Page")
        for paper in current_slide["left"].split('\n\n'):
            if paper.strip():
                st.markdown(paper, unsafe_allow_html=True)
                mermaid_diagram = generate_mermaid_code(paper)
                st.markdown(f"```mermaid\n{mermaid_diagram}\n```", unsafe_allow_html=True)
    with col_right:
        st.markdown("### Right Page")
        for paper in current_slide["right"].split('\n\n'):
            if paper.strip():
                st.markdown(paper, unsafe_allow_html=True)
                mermaid_diagram = generate_mermaid_code(paper)
                st.markdown(f"```mermaid\n{mermaid_diagram}\n```", unsafe_allow_html=True)

    # Countdown timer (15 seconds) for auto-advancement
    for remaining in range(15, 0, -1):
        st.markdown(f"**Advancing in {remaining} seconds...**")
        time.sleep(1)

    # Advance to the next slide (wrap around at the end)
    st.session_state.slide_idx = (st.session_state.slide_idx + 1) % num_slides

    # Rerun the app to display the next slide
    st.rerun()

if __name__ == "__main__":
    main()