import numpy as np import csv from model import cumbersome_model2 from model import UNet_family from model import UNet_attention from model import tf_model from model import tf_data import time import torch import os import random import shutil from scipy.signal import decimate, resample_poly, firwin, lfilter os.environ["CUDA_VISIBLE_DEVICES"]="0" device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') def resample(signal, fs, tgt_fs): # downsample the signal to the target sample rate if fs>tgt_fs: fs_down = tgt_fs # Desired sample rate q = int(fs / fs_down) # Downsampling factor signal_new = [] for ch in signal: x_down = decimate(ch, q) signal_new.append(x_down) # upsample the signal to the target sample rate elif fs