audrey06100 commited on
Commit
119bf39
·
1 Parent(s): 77f4b5a
Files changed (1) hide show
  1. app_utils.py +4 -4
app_utils.py CHANGED
@@ -10,7 +10,7 @@ from scipy.interpolate import Rbf
10
  from scipy.optimize import linear_sum_assignment
11
  from sklearn.neighbors import NearestNeighbors
12
 
13
- def reorder_data(idx_order, fill_flags, inputname, m_filename):
14
  # read the input data
15
  raw_data = utils.read_train_data(inputname)
16
  #print(raw_data.shape)
@@ -26,12 +26,12 @@ def reorder_data(idx_order, fill_flags, inputname, m_filename):
26
  tmp_data = [raw_data[j, :] for j in idx_set]
27
  new_data[i, :] = np.mean(tmp_data, axis=0)
28
 
29
- utils.save_data(new_data, m_filename)
30
  return raw_data.shape
31
 
32
- def restore_order(batch_cnt, raw_data_shape, idx_order, fill_flags, d_filename, outputname):
33
  # read the denoised data
34
- d_data = utils.read_train_data(d_filename)
35
  if batch_cnt == 0:
36
  new_data = np.zeros((raw_data_shape[0], d_data.shape[1]))
37
  #print(new_data.shape)
 
10
  from scipy.optimize import linear_sum_assignment
11
  from sklearn.neighbors import NearestNeighbors
12
 
13
+ def reorder_data(idx_order, fill_flags, inputname, filename):
14
  # read the input data
15
  raw_data = utils.read_train_data(inputname)
16
  #print(raw_data.shape)
 
26
  tmp_data = [raw_data[j, :] for j in idx_set]
27
  new_data[i, :] = np.mean(tmp_data, axis=0)
28
 
29
+ utils.save_data(new_data, filename)
30
  return raw_data.shape
31
 
32
+ def restore_order(batch_cnt, raw_data_shape, idx_order, fill_flags, filename, outputname):
33
  # read the denoised data
34
+ d_data = utils.read_train_data(filename)
35
  if batch_cnt == 0:
36
  new_data = np.zeros((raw_data_shape[0], d_data.shape[1]))
37
  #print(new_data.shape)